• Title/Summary/Keyword: structure system

Search Result 22,340, Processing Time 0.045 seconds

The Seismic Behavior of the Truss-Arch Structure with Seismic Isolation (면진 트러스-아치 구조물의 지진거동 분석)

  • Kim, Gee-Cheol;Kim, Kwang-Il;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.73-84
    • /
    • 2008
  • The various systems as the seismic resistance systems are used to reduce the seismic response of structure. And the seismic isolation system among them is the system that reduces the seismic vibration to be transmitted from foundation to upper structure. The purpose of isolation system is to lengthen the period of structure and make its period shift from the dominant period of earthquake. In this study, the seismic behavior of arch structure with lead rubber bearing(LRB) and friction pendulum system(FPS) is analyzed. The arch structure is the simplest structure and has the basic dynamic characteristics among large spatial structures. Also, Large spatial structures have large vertical response by horizontal seismic vibration, unlike seismic behavior of normal rahmen structures. When horizontal seismic load is applied to the large spatial structure with isolation systems, the horizontal acceleration response of the large spatial structure is reduced and the vertical seismic response is remarkably reduced.

  • PDF

Intelligent Hybrid Modular Architecture for Multi Agent System

  • Lee, Dong-Hun;Baek, Seung-Min;Kuc, Tae-Yong;Chung, Chae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.896-902
    • /
    • 2004
  • The purpose of the study of multi-robot system is to realize multi-robot system easy for the control of robot system in case robot is adapted in the complicated environment of task structure. The purpose of the study of multi-robot system is to realize multi-robot system easy for the control of robot system in case robot is adapted in the complicated environment of task structure. To make real time control possible by making effective use of recognized information in this dynamic environment, suitable distribution of tasks should be made in consideration of function and role of each performing robots. In this paper, IHMA (Intelligent Hybrid Modular Architecture) of Intelligent combined control architecture which utilizes the merits of deliberative and reactive controllers will be suggested and its efficiency will be evaluated through the adaptation of control architecture to representative multi-robot system.

  • PDF

A decision support system for diagnosis of distress cause and repair in marine concrete structures

  • Champiri, Masoud Dehghani;Mousavizadegan, S.Hossein;Moodi, Faramarz
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.99-118
    • /
    • 2012
  • Marine Structures are very costly and need a continuous inspection and maintenance routine. The most effective way to control the structural health is the application of an expert system that can evaluate the importance of any distress on the structure and provide a maintenance program. An extensive literature review, interviews with expert supervisors and a national survey are used to build a decision support system for concrete structures in sea environment. Decision trees are the main rules in this system. The system input is inspection information and the system output is the main cause(s) of distress(es) and the best repair method(s). Economic condition, severity of distress, distress situation, and new technologies and the most repeated classical methods are considered to choose the best repair method. A case study demonstrates the application of the developed decision support system for a type of marine structure.

Rapid Design Method and System Development for Aircraft Wing Structure

  • Tang, Jiapeng;Han, Jing;Luo, Mingqiang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 2016
  • This work is mainly done by too many manual operations in the aircraft structure design process resulting in heavy workload, low efficiency and quality, non-standardized processes and procedures. A top-down associated design method employing the template parametric technology is proposed here in order to improve the quality of design and efficiency of aircraft wing structure at the preliminary design stage. The appropriate parametric tool is chosen and the rapid design system of knowledge-driven aircraft wing structure is developed. First, a skeleton model of aircraft wing structure is rapidly built up through the template encapsulated design knowledge. Associated design is then introduced to realize the association between the typical structural part and skeleton model. Finally, the related elements are referenced from skeleton model, and a typical structural part reflecting an automatic response for design changes of the upstream skeleton model is quickly constructed within the template. The rapid design system proposed and developed in this paper is able to formalize the design standardization of aircraft wing structure and thus the rapid generation of different aircraft wing structure programs and achieve the structural design knowledge reuse as well.

Seismic Fragility Evaluation of Isolated NPP Containment Structure Considering Soil-Structure Interaction Effect (지반-구조물 상호작용 효과를 고려한 지진격리시스템이 적용된 원전 격납건물의 지진 취약도 평가)

  • Eem, Seung Hyun;Jung, Hyung Jo;Kim, Min Kyu;Choi, In Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.53-59
    • /
    • 2013
  • Several researches have been studied to enhance the seismic performance of nuclear power plants (NPPs) by application of seismic isolation. If a seismic base isolation system is applied to NPPs, seismic performance of nuclear power plants should be reevaluated considering the soil-structure interaction effect. The seismic fragility analysis method has been used as a quantitative seismic safety evaluation method for the NPP structures and equipment. In this study, the seismic performance of an isolated NPP is evaluated by seismic fragility curves considering the soil-structure interaction effect. The designed seismic isolation is introduced to a containment building of Shin-Kori NPP which is KSNP (Korean Standard Nuclear Power Plant), to improve its seismic performance. The seismic analysis is performed considering the soil-structure interaction effect by using the linearized model of seismic isolation with SASSI (System for Analysis of Soil-Structure Interaction) program. Finally, the seismic fragility is evaluated based on soil-isolation-structure interaction analysis results.

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

Fabrication of Hierarchical Nanostructures Using Vacuum Cluster System

  • Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.389-390
    • /
    • 2012
  • In this study, we fabricate a superhydrophobic surface made of hierarchical nanostructures that combine wax crystalline structure with moth-eye structure using vacuum cluster system and measure their hydrophobicity and durability. Since the lotus effect was found, much work has been done on studying self-cleaning surface for decades. The surface of lotus leaf consists of multi-level layers of micro scale papillose epidermal cells and epicuticular wax crystalloids [1]. This hierarchical structure has superhydrophobic property because the sufficiently rough surface allows air pockets to form easily below the liquid, the so-called Cassie state, so that the relatively small area of water/solid interface makes the energetic cost associated with corresponding water/air interfaces smaller than the energy gained [2]. Various nanostructures have been reported for fabricating the self-cleaning surface but in general, they have the problem of low durability. More than two nanostructures on a surface can be integrated together to increase hydrophobicity and durability of the surface as in the lotus leaf [3,5]. As one of the bio-inspired nanostructures, we introduce a hierarchical nanostructure fabricated with a high vacuum cluster system. A hierarchical nanostructure is a combination of moth-eye structure with an average pitch of 300 nm and height of 700 nm, and the wax crystalline structure with an average width and height of 200 nm. The moth-eye structure is fabricated with deep reactive ion etching (DRIE) process. $SiO_2$ layer is initially deposited on a glass substrate using PECVD in the cluster system. Then, Au seed layer is deposited for a few second using DC sputtering process to provide stochastic mask for etching the underlying $SiO_2$ layer with ICP-RIE so that moth-eye structure can be fabricated. Additionally, n-hexatriacontane paraffin wax ($C_{36}H_{74}$) is deposited on the moth-eye structure in a thermal evaporator and self-recrystallized at $40^{\circ}C$ for 4h [4]. All of steps are conducted utilizing vacuum cluster system to minimize the contamination. The water contact angles are measured by tensiometer. The morphology of the surface is characterized using SEM and AFM and the reflectance is measured by spectrophotometer.

  • PDF

Comparison and Analyzing System for Protein Tertiary Structure Database expands LOCK (LOCK을 확장한 3차원 단백질 구조비교 및 분석시스템의 설계 및 구현)

  • Jung Kwang Su;Han Yu;Park Sung Hee;Ryu Keun Ho
    • The KIPS Transactions:PartD
    • /
    • v.12D no.2 s.98
    • /
    • pp.247-258
    • /
    • 2005
  • Protein structure is highly related to its function and comparing protein structure is very important to identify structural motif, family and their function. In this paper, we construct an integrated database system which has all the protein structure data and their literature. The structure queries from the web interface are compared with the target structures in database, and the results are shown to the user for future analysis. To constructs this system, we analyze the Flat-File of Protein Data Bank. Then we select the necessary structure data and store as a new formatted data. The literature data related to these structures are stored in a relational database to query the my kinds of data easily In our structure comparison system, the structure of matched pattern and RMSD valure are calculated, then they are showed to the user with their relational documentation data. This system provides the more quick comparison and nice analyzing environment.

Internal Object Detection Monitoring System in Reinforced Concrete Structure using UWB-RF (UWB-RF를 이용한 콘크리트 구조물의 내부 물체 검출 모니터링 시스템)

  • Park, Dae-Hyuck;Kang, Eui-Sun
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1457-1464
    • /
    • 2017
  • This paper is to introduce the a system which monitors and detects the object position in reinforced the concrete structure using UWB-RF. This system is able to check any changes in the inside of the concrete structure using its penetration and reflection characteristics and it can also numerically measure the position of rebar in the concrete structure. For the verification of the performance of this system, we set up the internal compositions of concrete in 3 different types of test-bed. On the other hand, for the measuring of the location of rebar, which varies depending on the type of structure, the software which shows the distance in the structure were used. The result shows that the position in the concrete could be measured within the tolerance of ${\pm}1{\sim}4mm$ depending on the type of structure in the concrete.

Seismic Response Analysis of Support-Isolated Equipment in Primary Structure (감진계통 지지부가 설치된 기기의 지진해석)

  • Kim, Young Sang;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.35-42
    • /
    • 1992
  • The effectiveness of the support-isolation system for the equipment mounted on the primary structure is evaluated to reduce its responses under the earthquake load with considering the interaction between the primary structure and the internal equipment in this paper. A computer code (KBISAP) is developed to analyze the above system using the matrix condensation technique and constant average acceleration method. To evaluate the effectiveness of the support-isolation system, three systems are used in this study as follows: i) fixed-base structure with support-fixed equipment, ii) base-isolated structure with support-fixed equipment and iii) fixed-base structure with support-isolated equipment. The results of case study show that the acceleration of equipment with the support-isolation system is less than that of the support-fixed equipment in the base-isolated structure and significantly reduced the response compared with that of the support-fixed equipment in the fixed-base structure with the reduction factor of 8. The support-isolation system used in this study can reduce the response and also increase the safety margin of the important safety-related internal equipments.

  • PDF