• Title/Summary/Keyword: structure health monitoring

Search Result 560, Processing Time 0.033 seconds

A Safety Evaluation Strategy Employing Bridge Health Monitoring System by Traffic Loads (교량 상시계측시스템을 이용한 실시간 안전성평가시스템 구축 방안)

  • Lee, Woo-Sang;Joo, Bong-Chul;Park, Ki-Tae
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.481-484
    • /
    • 2008
  • The research was carried out to suggest the bridge health monitoring systems that have been composed damage detection algorithm and a system for evaluation load carrying capacity of bridge by traffic loads for the purpose of safety management of bridge structure in efficient and economic.

  • PDF

Building structural health monitoring using dense and sparse topology wireless sensor network

  • Haque, Mohammad E.;Zain, Mohammad F.M.;Hannan, Mohammad A.;Rahman, Mohammad H.
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.607-621
    • /
    • 2015
  • Wireless sensor technology has been opened up numerous opportunities to advanced health and maintenance monitoring of civil infrastructure. Compare to the traditional tactics, it offers a better way of providing relevant information regarding the condition of building structure health at a lower price. Numerous domestic buildings, especially longer-span buildings have a low frequency response and challenging to measure using deployed numbers of sensors. The way the sensor nodes are connected plays an important role in providing the signals with required strengths. Out of many topologies, the dense and sparse topologies wireless sensor network were extensively used in sensor network applications for collecting health information. However, it is still unclear which topology is better for obtaining health information in terms of greatest components, node's size and degree. Theoretical and computational issues arising in the selection of the optimum topology sensor network for estimating coverage area with sensor placement in building structural monitoring are addressed. This work is an attempt to fill this gap in high-rise building structural health monitoring application. The result shows that, the sparse topology sensor network provides better performance compared with the dense topology network and would be a good choice for monitoring high-rise building structural health damage.

Three-Dimensional Shape Estimation of Beam Structure Using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 보 구조물의 3차원 형상 추정)

  • Lee, Jin-Hyuk;Kim, Heon-Young;Kim, Dae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.241-247
    • /
    • 2015
  • Deflection and deformation occur easily in structures with long length, such as bridges and pipelines. Shape monitoring is required for ensuring their structural health. A fiber Bragg grating (FBG) sensor can be used for monitoring a large-scale structure because of its advantage of multiplexing. In this study, FBG sensors were used for monitoring a composite beam structure, and its strains were measured at multiple points. Thereafter, a shape estimation technique based on the strains was studied. Particularly, a three-dimensional shape estimation technique was proposed for accurate structural health monitoring. A simple experiment was conducted to verify the performance of the shape estimation technique. The result revealed that the estimated shape of the composite beam structure was in agreement with the actual shape obtained after the deformation of the specimen. Additionally, the deflection at a specific point was verified by comparing the estimated and actual deformations measured using a micrometer.

Stress variation analysis based on temperature measurements at Zhuhai Opera House

  • Lu, Wei;Teng, Jun;Qiu, Lihang;Huang, Kai
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • The Zhuhai Opera House has an external structure consisting of a type of spatial steel, where the stress of steel elements varies with the ambient temperature. A structural health monitoring system was implemented at Zhuhai Opera House, and the temperatures and stresses of the structures were monitored in real time. The relationship between the stress distribution and temperature variations was analysed by measuring the temperature and stresses of the steel elements. In addition to measurements of the structure stresses and temperatures, further simulation analysis was carried out to provide the detailed relationship between the stress distributions and temperature variations. The limited temperature measurements were used to simulate the structure temperature distribution, and the stress distributions of all steel elements of the structure were analysed by building a finite element model of the Zhuhai Opera House spatial steel structure. This study aims to reveal the stress distributions of steel elements in a real-world project based on temperature variations, and to supply a basic database for the optimal construction time of a spatial steel structure. This will not only provide convenient, rapid and safe early warnings and decision-making for the spatial steel structure construction and operation processes, but also improve the structural safety and construction accuracy of steel space structures.

Deformation Measuring of Tensegrity Structure by Optical Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 텐서그리티 구조물의 변형 계측)

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.6
    • /
    • pp.95-100
    • /
    • 2008
  • The object of this paper is to verify possible to monitor the deformation of cable in the tensegrity structure. Also, always monitoring system of tensegrity structure using Fiber Bragg Grating Sensor is described. We carry out experiments with measuring deformation of cable in the tensegrity structure based on loading conditions. In the result of experiment, the Fiber Bragg Grating Sensors shows accurate response to the loading conditions. Therefore, we can make sure the possibility of Fiber Bragg Grating Sensor in health monitoring of the cable structure like tensegrity structure.

  • PDF

Damage identification of substructure for local health monitoring

  • Huang, Hongwei;Yang, Jann N.
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.795-807
    • /
    • 2008
  • A challenging problem in structural damage detection based on vibration data is the requirement of a large number of sensors and the numerical difficulty in obtaining reasonably accurate results when the system is large. To address this issue, the substructure identification approach may be used. Due to practical limitations, the response data are not available at all degrees of freedom of the structure and the external excitations may not be measured (or available). In this paper, an adaptive damage tracking technique, referred to as the sequential nonlinear least-square estimation with unknown inputs and unknown outputs (SNLSE-UI-UO) and the sub-structure approach are used to identify damages at critical locations (hot spots) of the complex structure. In our approach, only a limited number of response data are needed and the external excitations may not be measured, thus significantly reducing the number of sensors required and the corresponding computational efforts. The accuracy of the proposed approach is illustrated using a long-span truss with finite-element formulation and an 8-story nonlinear base-isolated building. Simulation results demonstrate that the proposed approach is capable of tracking the local structural damages without the global information of the entire structure, and it is suitable for local structural health monitoring.

Fatigue Crack Detection Test of Weldments Using Piezoceramic Transducers

  • KIM MYUNG HYUN;KANG SUNG WON;KEUM CHUNG-YON
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.21-27
    • /
    • 2005
  • Large welded structures, including ships and offshore structures, are normally in operation under cyclic fatigue loadings. These structures include many geometric discontinuities, as well as material discontinuities due to weld joints. The fatigue strength at these hot spots is very important for the structural performance. In the past, various Non Destructive Evaluation (NDE) techniques have been developed to detect fatigue cracks and to estimate their location and size. However, an important limitation of most of the existing NDE methods is that they are off line; the normal operation of the structure has to be interrupted, and the device often has to be disassembled. This study explores the development of a structural health monitoring system, with a special interest in applying the technique to welded structural members in ship and offshore structures. In particular, the impedance based structural health monitoring technique that employs the coupling effect of piezoceramic (PZT) materials and structures is investigated.

Structural Health Monitoring Using Wavelet Packet Transform (웨이블렛 팩킷변환을 이용한 구조물의 이상상태 모니터링)

  • Kim, Han-Sang;Yun, Chung-Bang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.619-624
    • /
    • 2004
  • In this research, the structural health monitoring method using wavelet packet analysis and artificial neural network (ANN) is developed. Wavelet packet Transform (WPT) is applied to the response acceleration of a 3 element-cantilever beam which is subjected to impulse load and Gaussian random load to decompose the response signal, then the energy of each component is calculated. The first ten largest components in magnitude among the decomposed components are selected as input to an ANN to identify the damage location and severity. This method successfully predicted the amount of damage in the structure when the structure is subjected to impulse load. However, when the beam is subjected to Gaussian random load which can be considered as ambient vibration it did not yield satisfactory results. This method is applicable to structures such as machinery gears that are subjected to repetitive loads.

  • PDF

Data Analysis and Health Index for Health Monitoring of Seohae Bridge (서해대교 건전성 모니터링을 위한 데이터 분석 및 건전성지수)

  • Kim, Hyunsu;Kim, Yuhee;Park, Jongchil;Shin, Soobong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.387-395
    • /
    • 2013
  • It is important to collect reliable measured data for proper bridge health monitoring. However, in reality incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In case of sensor malfunction, parts of measured data are missing and thus health monitoring cannot be carried out reliably. Due to environmental effects such as temperature variation, dynamic characteristics of natural frequencies may change as if the structure is damaged. The paper proposes a systematic procedure of data processing and data analysis for reliable structural health monitoring. Also, it applies the Mahalanobis distance as a health index computed statistically using revised data. The proposed procedure has been examined using numerically simulated data from a truss structure and then applied to a set of field data measured from Seohae cable-stayed bridge.