• Title/Summary/Keyword: structure effect

Search Result 13,147, Processing Time 0.042 seconds

Electrocaloric Effect in Emerging Fluorite-Structure Ferroelectrics (새로운 플루오라이트 구조 강유전체의 Electrocaloric Effect)

  • Yang, Kun;Park, Ju Yong;Lee, Dong Hyun;Park, Min Hyuk
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.480-488
    • /
    • 2020
  • The electrocaloric effect can be observed in pyroelectric materials based on conversion between electrical and thermal energy, and can be utilized for the future environment-friendly refrigeration technology. Especially, a strong electrocaloric effect is expected in materials in which field-induced phase transition can be achieved. Emerging fluorite-structure ferroelectrics such as doped hafnia and zirconia, first discovered in 2011, are considered the most promising materials for next-generation semiconductor devices. Besides application of fluorite-structure ferroelectrics for semiconductor devices based on their scalability and CMOS-compatibility, field-induced phase transition has been suggested as another interesting phenomenon for various energy-related applications such as solid-state cooling with electrocaloric effect as well as energy conversion/storage and IR/piezoelectric sensors. Especially, their giant electrocaloric effect is considered promising for solid-state-cooling. However, the electrocaloric effect of fluorite-structure oxides based on field-induced phase transition has not been reviewed to date. In this review, therefore, the electrocaloric effect accompanied by field-induced phase transition in fluorite-structure ferroelectrics is comprehensively reviewed from fundamentals to potential applications.

Organic field-effect transistors with step-edge structure

  • Kudo, Kazuhiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.91-93
    • /
    • 2008
  • The organic field-effect transistors with step-edge structure were fabricated. Source and drain electrodes were obliquely deposited by vacuum evaporation. The step-edge of the gate electrode serve as a shadow mask, and the short channel is formed at the step-edge. The excellent device performances were obtained.

  • PDF

The Electrical Properties of Single-silicon TFT Structure with Symmetric Dual-Gate for kink effect suppression

  • Lee, Deok-Jin;Kang, Ey-Goo
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.783-790
    • /
    • 2005
  • In this paper, we have simulated a Symmetric Dual-gate Single-Si TFT which has three split floating n+ zones. This structure reduces the kink-effect drastically and improves the on-current. Due to the separated floating n+ zones, the transistor channel region is split into four zones with different lengths defined by a floating n+ region, This structure allows an effective reduction of the kink-effect depending on the length of two sub-channels. The on-current of the proposed dual-gate structure is 0.9mA while that of the conventional dual-gate structure is 0.5mA at a 12V drain voltage and a 7V gate voltage. This result shows a 80% enhancement in on-current. Moreover we observed the reduction of electric field in the channel region compared to conventional single-gate TFT and the reduction of the output conductance in the saturation region. In addition, we also confirmed the reduction of hole concentration in the channel region so that the kink-effect reduces effectively.

  • PDF

Effect of soil-structure interaction for a building isolated with FPS

  • Krishnamoorthy, A.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.285-297
    • /
    • 2013
  • The effect of soil structure interaction (SSI) on seismic response of a multi-degree-of-freedom structure isolated with a friction pendulum system (FPS) is studied. In the analysis, the soil is considered as an elastic continuum and is modeled using the finite element method. The effect of SSI on response of the structure is evaluated for twenty far-field and twenty near-fault earthquake ground motions. The effect of friction coefficient of sliding material of FPS on SSI is also studied. The results of the study show that the seismic response of the structure increases for majority of the earthquake ground motions due to SSI. The sliding displacement and base shear are underestimated if SSI effects are ignored in the seismic analysis of structures isolated with FPS.

Structural Layout Optimization Strategy Considering Assemblage (조립성을 고려한 위상 최적설계법 개발)

  • Choi Guk-Jin;Kim Myung-Jin;Kim Yoon-Young;Jang Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.512-519
    • /
    • 2006
  • In the ground-structure-based topology optimization, beam elements are regarded to be rigidly connected to each other, and joints are assumed to have infinite stiffness. Thus the optimized topology of a structure is obtained according to the assumption of no joint effect, and the resulting structure should be manufactured in one piece if the joint effect is to be excluded as much as possible. The underlying problems are that 1) the performance of the structure might be seriously decreased if the members of the structure are connected through welding or bolting, not manufactured in one piece, and 2) the topology of the structure will be changed if the joint effect is taken into account. In the paper, the assemblage issue is considered on topology optimization, and a new formulation based on the joint stiffness-varied ground beam structure is developed. Joints of a beam structure are modeled by elastic spring elements whose stiffnesses are controlled by design variables during the optimization.

The dynamic response of adjacent structures with the shallow foundation of different height and distance on liquefiable saturated sand

  • Jilei Hu;Luoyan Wang;Wenxiang Shen;Fengjun Wei;Rendong Guo;Jing Wang
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.135-148
    • /
    • 2023
  • The structure-soil-structure interaction (SSSI) effect in adjacent structures may affect the liquefaction-induced damage of shallow foundation structures. The existing studies only analysed the independent effects on the structural dynamic response but ignored the coupling effect of height difference and distance of adjacent structures (F) on liquefied foundations on the dynamic response. Therefore, this paper adopts finite element and finite difference coupled dynamic analysis method to discuss the effect of the F on the seismic response of shallow foundation structures. The results show that the effect of the short structure on the acceleration response of the tall structure can be neglected as F increases when the height difference reaches 2 times the height of the short structure. The beneficial effect of SSSI on short structures is weakened under strong seismic excitations, and the effect of the increase of F on the settlement ratio gradually decreases, which causes a larger rotation hazard. When the distance is smaller than the foundation width, the short structure will exceed the rotation critical value and cause structural damage. When the distance is larger than the foundation width, the rotation angle is within the safe range (0.02 rad).

Seismic retrofit of a soft first story structure considering soil effect

  • Michael Adane;Jinkoo Kim
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.345-352
    • /
    • 2023
  • This paper studied the effect of soil-structure interaction (SSI) on the seismic response and retrofit of a reinforced concrete structure with a soft-first story for different soil types. A 5-story structure built on a 30m deep homogeneous soil mass was considered as a case study structure, and steel column jacketing and steel bracing were chosen as seismic retrofit methods. Seismic responses of a fixed-base and a flexible base structure subjected to seven scaled earthquake records were obtained using the software OpenSees to investigate the effect of soil on seismic response and retrofit. The nonlinearBeamColumn elements with the fiber sections were used to simulate the nonlinear behavior of the beams and columns. Soil properties were defined based on shear wave velocity according to categorized site classes defined in ASCE-7. The finite element model of the soil was made using isoparametric four-noded quadrilateral elements and the nonlinear dynamic responses of the combined system of soil and structure were calculated in the OpenSees. The analysis results indicate that the soil-structure interaction plays an important role in the seismic performance and retrofit of a structure with a soft-first story. It was observed that column steel jacketing was effective in the retrofit of the model structure on a fixed base, whereas stronger retrofit measures such as steel bracing were needed when soil-structure interaction was considered.

Development of a High Value Added Knit Structure for Middle-aged Women (중년여성을 위한 고부가가치 니트 조직 개발)

  • Lee, Insuk;Kim, Jiyoung
    • Journal of Fashion Business
    • /
    • v.18 no.2
    • /
    • pp.148-165
    • /
    • 2014
  • The purpose of this study is to establish a theory about the necessary structure for knitwear design, and to propose it with the practical data through the actual development of a high value added knit structure. For this study, the market was conducted along with literature reviews on the existing studies and the relevant books about knit structures. The market research aimed at the products released in the spring/summer and fall/winter seasons of 2012-2013, focusing on brand for middle aged women. The utilization of the structure by item and the characteristics of knit design were studied. The research was conducted on S/S products in May and July, and F/W products in October and December. As a result of the market research, it was shown that the lightweight structures with permeability such as plain, lace, links and links, this is repeated and rib structure were frequently utilized during the S/S season, while double structures with good shape stability were greatly utilized during the F/W season. Also, during the F/W season, a cable structure and tubular jacquard that emphasized the volume or cubic effect were frequently used, and there were many jacquard structures where a change of color sense and motive were added. Concerning the knit structures development, the researcher designed the knit structure at the actual production site of the knit fashion. A total of 5 pieces of knit structures were developed by asking a professional for programming and knitting. To the developed structures, the study added a multi-gauged effect, herringbone transformation effect, 3-dimensional surface effect, color effects, geometric patterns, lace penetration effect, and soft surface effect in a water-drop shape. In addition, the structures had differences in the added values by mixing various structures and diversely expressing color sense on the knitting line. This study proposes the direction for 21st century knitwear product design, through the development of a high value added knit structure.

Effect of the Molecular Structure of Rubbed Polyimide Films for Surface Liquid Crystal Alignment of Nematic Liquid Crystal (네마틱 백정의 표면 액정 배향에관한 폴리이미드막의 분자 구조의 효과)

  • 서대식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.232-234
    • /
    • 1996
  • We have investigated the effect of molecular structure of polymer of rubbed polyimide (PI) films for surface liquid crystal alignment. To obtain surface alignment effect of Polymer molecular structure, we measured the polar (out of plane-tilt) anchoring strength and surface ordering of 5CB on rubbed PI surfaces. We have found that the polar anchoring strength of 5CB is depend on the polymer molecular structure of these unidirectionally rubbed PI surfaces.

  • PDF

A Study on the Noise and Condensation Characteristics of Complex Structure Drainage Pipe Materials (복합 구조형 배수 배관재의 소음 및 결로 특성에 관한 연구)

  • Kim, Jae-Dol
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.72-77
    • /
    • 2016
  • The present study investigates noise and condensation characteristics of polyvinyl chloride (PVC), which is widely used for drainage piping materials, complex double structure by comparing to those of PVC single structure piping materials. In addition, effects of insulation on drainage noise has been measured experimentally. As the results of the experiments, noise reduction effect of PVC complex double structure is superior to that of PVC single structure in terms of elbow and vertical piping materials which are employed for drainage pipes of toilet bowls and bathtub. The insulation barely have effect on the noise reduction in case of the PVC single structure since there is almost no changes in noise occurrence even though the insulation is applied on both elbow and vertical piping materials. Temperature differences between inside and outside of the pipes have been measures for the PVC single and complex double structures as well. In consequence, outside temperature of the PVC complex double structure is higher than that of the PVC single structure. The condensation occurrence time of the PVC complex double structure shows a distinct difference from that of the PVC single structure, thus, the PVC complex double structure has outstanding effect on preventing the condensation.