• Title/Summary/Keyword: structure crack

Search Result 1,246, Processing Time 0.032 seconds

Threshold Condition for the Propagation of Short Fatigue Crack (炭素鋼 微小疲勞크랙 전파의 不限界條件)

  • 김민건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.505-512
    • /
    • 1988
  • Since the propagation of a short fatigue crack is directly related to the large crack which causes the fracture of bulk specimen, the detailed study on the propagation of the short crack is essential to prevent the fatigue fracture. However, a number of recent studies have demonstrated that the short crack can grow at a low applied stress level which are predicted from the threshold condition of large crack. In present study, the threshold condition for the propagation of short fatigue crack is examined with respect to the microstructure and cyclic loading history. Specimens employed in this study were decarburized eutectoid steels which have various decarburized ferrite volume fraction. Rotating bending fatigue test was carried out on these specimens with the special emphasis on the '||'&'||'quot;critical non-propagating crack length.'||'&'||'quot; It is found that the reduction of the endurance limit of their particular microstructures can be due to the increase of the length of critical non-propagating crack, and the quantitative relationship between the threshold stress .DELTA. .sigma. $_{th}$ and the critical non-propagating crack length Lc can be written as .DELTA. .sigma. $_{th}$, Lc=C where m, C is constant. Further experiments were carried out on the effect of pearlitic structure and cyclic loading history on the length of critical non-propagating crack. It is shown that the length of critical non-propagating crack is closely related to both pearlite interlamellar spacing and cyclic loading history.ory. cyclic loading history.

Development of Multi-Channel DCPD System for Surface Crack Measurement (표면균열 형상측정을 위한 다채널 DCPD 시스템의 개발)

  • Shim D.J.;Park H.L.;Choi J.B.;Kim Y.J.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.49-54
    • /
    • 2000
  • The DCPD(Direct Current Potential Drop) method has been adopted for the crack measurement of a structure. The objective of this paper is to develop a multi-channel DCPD system not only for detecting crack depth, but also for determining the accurate shape of the surface crack. For this purpose, an exclusive software was also developed. In order to verify the developed DCPD system it was initially tested on a CT specimen, and subsequently was applied to a wide plate specimen. The developed multi-channel DCPD system was proven to provide an efficient and accurate measurement of a surface crack during the crack growth.

  • PDF

Crack obeying ability of coating material and Increasing in fatigue life of coated marine concrete (콘크리트용 코팅재의 구열추종성과 그 적용에 의한 해양콘크리트 구조의 피로수명 증가)

  • 사림신장;정상정일;권혁문;송하행의;태야지사
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.131-134
    • /
    • 1992
  • This paper deals with the obeying ability to the crack of waterproof membrane (produced from polybutadiene- or epoxy type resine) under static and repetitive loading, and an increase in fatigue life of marine concrete structure by applying the waterproof membrane. From experimental results, it is cleared that the obeying ability for crack under repetitive loading is smaller than that under static loading. With regard to fatigue life, the use of membrane possessed large obeying performance under repetitive loading results in significantly increase in fatigue life of marine concrete structure

  • PDF

A Study on Structure Minute Damage Assessment by Using PZT Patches (PZT를 이용한 구조물 미소손상 평가에 관한 연구)

  • Kim, Byung-Jin;Han, Su-Hyun;Hong, Dong-Pyo;Tae, Sin-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.201-205
    • /
    • 2005
  • This work presents a study on development of a practical and quantitative technique for assessment of the structural health condition by piezoelectric Impedance-based technique associated with longitudinal wave propagaation. The natural frequency of the object has a tendency of frequency shifting according to hole size corresponded to real structure crack and crack size. In order to estimate the damage condition numerically, we suggest the evaluation method of Impedance peak frequency shift hF in this paper.

  • PDF

Thermal Crack Control of SRC Pier Using Low-Heat Portland Cement (저열 포틀랜드 시멘트 적용을 통한 SRC 교각 온도균열 제어)

  • 김태홍;하재담;유재상;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.297-302
    • /
    • 2001
  • SRC pier at KTE 6-1 construction area is a very important structure. Precise control of quality is needed. This pier has 3.50m$\times$3.73m section and 38.20m length. So this structure must be treated as mass concrete and thermal crack caused by hydration heat should be controled. In this project belite cement concrete is used to control the thermal crack. As a result of adapting belite cement concrete perfect control is achieved. Finally, hydration heat FEM analysis of horizontal element is executed for Ordinary Portland Cement concrete and belite cement concrete. In comparison of two results, it is confirmed that using low heat portland cement concrete is necessary.

  • PDF

A method of global-local analyses of structures involving local heterogeneities and propagating cracks

  • Kurumatani, Mao;Terada, Kenjiro
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.529-547
    • /
    • 2011
  • This paper presents the global-local finite cover method (GL-FCM) that is capable of analyzing structures involving local heterogeneities and propagating cracks. The suggested method is composed of two techniques. One of them is the FCM, which is one of the PU-based generalized finite element methods, for the analysis of local cohesive crack growth. The mechanical behavior evaluated in local heterogeneous structures by the FCM is transferred to the overall (global) structure by the so-called mortar method. The other is a method of mesh superposition for hierarchical modeling, which enables us to evaluate the average stiffness by the analysis of local heterogeneous structures not subjected to crack propagation. Several numerical experiments are conducted to validate the accuracy of the proposed method. The capability and applicability of the proposed method is demonstrated in an illustrative numerical example, in which we predict the mechanical deterioration of a reinforced concrete (RC) structure, whose local regions are subjected to propagating cracks induced by reinforcement corrosion.

A study on crack detection using Image processing (화상처리 기법을 이용한 균열 검출에 관한 연구)

  • 이방연;김진근;박석균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.655-658
    • /
    • 2003
  • The crack of concrete structure plays an important role in the durability and safety of structure. Therefore, the features such as width, length, and direction of that must be measured periodically. The conventional method of measurement of cracks is manually sketched, however. it takes a fairly long time and lacks quantitative objectivity. This study proposes the algorithm to extract and analyze cracks automatically. The proposed algorithm is composed of two sub-algorithms. The extraction algorithm includes elimination of effect due to light, binarization. and noise reduction. The analysis algorithm includes thinning process, labeling, and calculation of crack width, length, and direction. The test to demonstrate the algorithm is fulfilled using the images of cracks on real concrete surface.

  • PDF

A STUDY ON THE THERMAL FATIGUE TEST AND ANALYSIS METHOD FOR THE DEVELOPMENT OF BRAKE DISK MATERIALS

  • Lim, Choong-Hwan;Goo, Byeong-Choon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.127-131
    • /
    • 2008
  • In the disk braking of the railway trains, kinetic energy of the vehicles is converted into thermal energy by friction between a brake disk and the pad materials. This can be cause of the iterative thermal shock and generates thermal cracks on the brake disk surface. In this study, we show the comparative thermal fatigue test procedures and thermal crack analysis process to evaluate the thermal fatigue characteristics of candidate materials designed for development of heat-resistant brake disk material. We carried out tests on the conventional brake disk materials used for Saemaul and Mugunghwa trains, then we comparatively analyzed the thermal crack initiation and propagation on the surface of a specimen. A thermal fatigue test procedure and a crack analysis process were suggested to evaluate the heat resistance of the developed materials at later studies.

  • PDF

A Study on the Effects of Artifacts on Fatigue Limit of Ductile Cast Iron with Ferritic Structure

  • Kim, Jin-Hak;Kim, Min-Gun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1021-1027
    • /
    • 2000
  • In this study, fatigue tests were performed to examine the effects of micro drill hole on fatigue limit of as cast and austempered ductile cast iron (ADI) using the rotary bending fatigue tester. As results, micro drill holes ($diameter{\leq}0.4mm$) did not influence the fatigue limit of ADI, compared to annealed ductile cast iron; the critical defect size of crack initiation, in ADI was larger than as cast. If the ${\sqrt{area}}$ of micro drill hole and graphite nodule in ADI are comparable, crack initiates at the graphite nodule. When the ruggedness developes through austempering treatment process, microstructure on crack initiation at micro drill hole is tougher than that of as cast ductile cast iron.

  • PDF

Reliability Evaluation of Ceramic Structures Under Thermal Shocks (열충격이 작용하는 세라믹구조의 신뢰성 평가)

  • 김종태;심확섭;장건익;이치우;이환우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.954-958
    • /
    • 1996
  • An analysis method for the reliability of ceramic structures subjected to thermal shocks is presented, Flaws with the size of given probability distribution function are assumed to be distributed at random with a certain density per unit volume in the structures. Criterions for crack instability are derived for brittle solids under general thermal stresses. A probabilistic failure model is presented to study the probability of crack instability for blittle solids containing cracks with uncertain crack size. The reliabilities of brittle structures are evaluated based on the weakest-link hypothesis, which states that a structure fails when the cracks in any differential volume become unstable. A numerical example is given to demonstrate the application of the proposed method.

  • PDF