Browse > Article
http://dx.doi.org/10.12989/sem.2011.38.4.529

A method of global-local analyses of structures involving local heterogeneities and propagating cracks  

Kurumatani, Mao (Department of Urban and Civil Engineering, Ibaraki University)
Terada, Kenjiro (Department of Civil and Environmental Engineering, Tohoku University)
Publication Information
Structural Engineering and Mechanics / v.38, no.4, 2011 , pp. 529-547 More about this Journal
Abstract
This paper presents the global-local finite cover method (GL-FCM) that is capable of analyzing structures involving local heterogeneities and propagating cracks. The suggested method is composed of two techniques. One of them is the FCM, which is one of the PU-based generalized finite element methods, for the analysis of local cohesive crack growth. The mechanical behavior evaluated in local heterogeneous structures by the FCM is transferred to the overall (global) structure by the so-called mortar method. The other is a method of mesh superposition for hierarchical modeling, which enables us to evaluate the average stiffness by the analysis of local heterogeneous structures not subjected to crack propagation. Several numerical experiments are conducted to validate the accuracy of the proposed method. The capability and applicability of the proposed method is demonstrated in an illustrative numerical example, in which we predict the mechanical deterioration of a reinforced concrete (RC) structure, whose local regions are subjected to propagating cracks induced by reinforcement corrosion.
Keywords
global-local analysis; finite cover method; hierarchical analysis method; multiple cohesive crack growth; reinforcement corrosion;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Asferg, J.L., Poulsen, P.N. and Nielsen, L.O. (2007), "A direct XFEM formulation for modeling of cohesive crack growth in concrete", Comput. Concrete, 4(2), 83-100.   DOI
2 Bhargava, K. and Ghosh, A.K. (2003), "Analytical model of corrosion-induced cracking of concrete considering the stiffness of reinforcement", Struct. Eng. Mech., 16(6), 749-769.   DOI
3 Chen, D. and Mahadevan, S. (2008), "Chloride-induced reinforcement corrosion and concrete cracking simulation", Cement Concrete Compos., 30(3), 227-238.   DOI   ScienceOn
4 Daux, C., Moës, N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000), "Arbitrary branched and intersecting cracks with the extended finite element method", Int. J. Numer. Meth. Eng., 48(12), 1741-1760.   DOI   ScienceOn
5 Du, Y.G., Chan, A.H.C. and Clark, L.A. (2006), "Finite element analysis of the effects of radial expansion of corroded reinforcement", Comput. Struct., 84(13-14), 917-929.   DOI   ScienceOn
6 Duarte, C.A., Hamzeh, O.N., Liszka, T.J. and Tworzydlo, W.W. (2001), "A generalized finite element method for the simulation of three-dimensional dynamic crack propagation", Comput. Meth. Appl. Mech. Eng., 190(15-17), 2227-2262.   DOI   ScienceOn
7 Duarte, C.A. and Kim, D.J. (2008), "Analysis and applications of a generalized finite element method with global-local enrichment functions", Comput. Meth. Appl. Mech. Eng., 197(6-8), 487-504.   DOI   ScienceOn
8 Dumstorff, P. and Meschke, G. (2007), "Crack propagation criteria in the framework of X-FEM-based structural analyses", Int. J. Numer. Anal. Meth. Geomech., 31(2), 239-259.   DOI   ScienceOn
9 Farid Uddin, A.K.M., Numata, K., Shimasaki, J., Shigeishi, M. and Ohtsu, M. (2004), "Mechanisms of crack propagation due to corrosion of reinforcement in concrete by AE-SiGMA and BEM", Construct. Build. Mater., 18(3), 181-188.   DOI   ScienceOn
10 Fish, J. (1992), "The s-version of the finite element method", Comput. Struct., 43(3), 539-547.   DOI   ScienceOn
11 Gasser, T.C. and Holzapfel, G.A. (2005), "Modeling 3D crack propagation in unreinforced concrete using PUFEM", Comput. Meth. Appl. Mech. Eng., 194(25-26), 2859-2896.   DOI   ScienceOn
12 Hansbo, A. and Hansbo, P. (2004), "A finite element method for the simulation of strong and weak discontinuities in solid mechanics", Comput. Meth. Appl. Mech. Eng., 193(33-35), 3523-3540.   DOI   ScienceOn
13 Lee, S.H., Song, J.H., Yoon, Y.C., Zi, G. and Belytschko, T. (2004), "Combined extended and superimposed finite element method for cracks", Int. J. Numer. Meth. Eng., 59(8), 1119-1136.   DOI   ScienceOn
14 Hillerborg, A., Modeer, A. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-782.   DOI   ScienceOn
15 Kurumatani, M. and Terada, K. (2005), "Finite cover method with mortar elements for elastoplasticity problems", Comput. Mech., 36(1), 45-61.   DOI   ScienceOn
16 Kurumatani, M. and Terada, K. (2009), "Finite cover method with multi-cover-layers for the analysis of evolving discontinuities in heterogeneous media", Int. J. Numer. Meth. Eng., 79(1), 1-24.   DOI   ScienceOn
17 Loehnert, S. and Belytschko, T. (2007), "A multiscale projection method for macro/microcrack simulations", Int. J. Numer. Meth. Eng., 71(12), 1466-1482.   DOI   ScienceOn
18 Maekawa, K., Ishida, T. and Kishi, T. (2003), "Multi-scale modeling of concrete performance - Integrated material and structural mechanics", J. Adv. Concrete Technol., 1(2), 91-126.   DOI   ScienceOn
19 Marsavina, L., Audenaert, K., De Schutter, G., Faur, N. and Marsavina, D. (2007), "Modeling of chloride diffusion in hetero-structured concretes by finite element method", Cement Concrete Compos., 29(7), 559-565.   DOI   ScienceOn
20 Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: Basic theory and applications", Comput. Meth. Appl. Mech. Eng., 139(1-4), 289-314.   DOI   ScienceOn
21 Mergheim, J., Kuhl, E. and Steinmann, P. (2005), "A finite element method for the computational modelling of cohesive cracks", Int. J. Numer. Meth. Eng., 63(2), 276-289.   DOI   ScienceOn
22 Pivonkaa, P., Hellmichb, C. and Smith, D. (2004), "Microscopic effects on chloride diffusivity of cement pastes - a scale-transition analysis", Cement Concrete Res., 34(12), 2251-2260.   DOI   ScienceOn
23 Wells, G.N. and Sluys, L.J. (2001), "A new method for modelling cohesive cracks using finite elements", Int. J. Numer. Meth. Eng., 50(12), 2667- 2682.   DOI   ScienceOn
24 Strouboulis, T., Copps, K. and Babuska, I. (2001), "The generalized finite element method", Comput. Meth. Appl. Mech. Eng., 190(32-33), 4081-4193.   DOI   ScienceOn
25 Suda, K., Misra, S. and Motohashi, K. (1993), "Corrosion products of reinforcing bars embedded in concrete", Corrosion Sci., 35(5-8), 1543-1549.   DOI   ScienceOn
26 Terada, K., Asai, M. and Yamagishi, M. (2003), "Finite cover method for linear and nonlinear analyses of heterogeneous solids", Int. J. Numer. Meth. Eng., 58(9), 1321-1346.   DOI   ScienceOn
27 Zhang, J. and Lounis, Z. (2006), "Sensitivity analysis of simplified diffusion-based corrosion initiation model of concrete structures exposed to chlorides", Cement Concrete Res., 36(7), 1312-1323.   DOI   ScienceOn
28 Zhang, T. and Gjorv, O.E. (1996), "Diffusion behavior of chloride ions in concrete", Cement Concrete Res., 26(6), 907-917.   DOI   ScienceOn
29 Zuo, X.B., Sun, W., Yu, C. and Wan, X.R. (2010), "Modeling of ion diffusion coefficient in saturated concrete", Comput. Concrete, 7(5), 421-435.   DOI