• Title/Summary/Keyword: structure crack

Search Result 1,243, Processing Time 0.028 seconds

Battery-free slotted patch antenna sensor for wireless strain and crack monitoring

  • Yi, Xiaohua;Cho, Chunhee;Wang, Yang;Tentzeris, Manos M.
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1217-1231
    • /
    • 2016
  • In this research, a slotted patch antenna sensor is designed for wireless strain and crack sensing. An off-the-shelf RFID (radiofrequency identification) chip is adopted in the antenna sensor design for signal modulation. The operation power of the RFID chip is captured from wireless reader interrogation signal, so the sensor operation is completely battery-free (passive) and wireless. For strain and crack sensing of a structure, the antenna sensor is bonded on the structure surface like a regular strain gage. Since the antenna resonance frequency is directly related with antenna dimension, which deforms when strain occurs on the structural surface, the deformation/strain can be correlated with antenna resonance frequency shift measured by an RFID reader. The slotted patch antenna sensor performance is first evaluated through mechanics-electromagnetics coupled simulation. Extensive experiments are then conducted to validate the antenna sensor performance, including tensile and compressive strain sensing, wireless interrogation range, and fatigue crack sensing.

A Study on the Probabilistic Nature of Fatigue Crack Propagation Life(II) -The Distribution of Crack Propagation Rate- (피로크랙 진전수명의 확률특성에 관한 연구 II)

  • 윤한용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1561-1567
    • /
    • 1990
  • Recently, some reports of experimental research on the distribution of fatigue crack propagation rate have been published, and the reliability evaluation using the results of research for the mechanical structure has been executed. Since the thicknesses of specimens used in the published reports are limited to the thin ones, the applicability of the results into the mechanical structure with another thickness seems to be doubtful. That is, not only the quantitative evaluation, but also qualitative evaluation of the effect of specimen thickness has not been executed. In this study, an experimental investigation has been done by using the new type automated multi-stage fatigue testing machine which was developed by the author. The influence of specimen thickness for the distribution of fatigue crack propagation rate with the results is discussed.

Characteristic of Fatigue Crack Behavior on the Mixed-Mode in Aluminum Alloy 5083-O

  • Kim, Gun-Ho;Cho, Kyu-Chun;Lee, Ho-Yeon;Won, Young-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.899-906
    • /
    • 2011
  • Generally, load conditions of machine or structure in fatigue destruction is occurred not under single load conditions but under mixed load conditions. However, the experiment under mixing mode is insufficient because of no having test standard to the behavior of crack under mixing mode and variety of test methods, and many tests are required. In this paper measured crack direction path by created figure capture system when a experiment. Also, we studied by comparison the behavior of crack giving the change of stress ratio and inserting beach mark. Through the test under mixing mode, advancing path of crack is indicated that advancing inclined angle ${\Theta}$ (direction of specimen length) has increased depending on the increase of mixed mode impaction. It is indicated that according to the increase of mixed mode loading condition impaction under mixing mode, advancing speed of crack gets slow. Also, we found that inner crack(cross section of specimen) is progressed more rapidly than outer crack based on data through beach mark.

Crack identification with parametric optimization of entropy & wavelet transformation

  • Wimarshana, Buddhi;Wu, Nan;Wu, Christine
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.33-52
    • /
    • 2017
  • A cantilever beam with a breathing crack is studied to improve the breathing crack identification sensitivity by the parametric optimization of sample entropy and wavelet transformation. Crack breathing is a special bi-linear phenomenon experienced by fatigue cracks which are under dynamic loadings. Entropy is a measure, which can quantify the complexity or irregularity in system dynamics, and hence employed to quantify the bi-linearity/irregularity of the vibration response, which is induced by the breathing phenomenon of a fatigue crack. To improve the sensitivity of entropy measurement for crack identification, wavelet transformation is merged with entropy. The crack identification is studied under different sinusoidal excitation frequencies of the cantilever beam. It is found that, for the excitation frequencies close to the first modal frequency of the beam structure, the method is capable of detecting only 22% of the crack depth percentage ratio with respect to the thickness of the beam. Using parametric optimization of sample entropy and wavelet transformation, this crack identification sensitivity is improved up to 8%. The experimental studies are carried out, and experimental results successfully validate the numerical parametric optimization process.

Development of the DCPD Method Based on Finite Element Analysis for Measuring Semi-Elliptical Surface Cracks (반타원 표면균열 형상측정을 위한 유한요소 전기장 해석에 기초한 직류전위차법의 개발)

  • Kim, Yeong-Jin;Sim, Do-Jun;Choe, Jae-Bung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1147-1154
    • /
    • 2001
  • One of major problems in analyzing failure mechanism of real components is the accurate measurement of crack size and shape. The DCPD(Direct Current Potential Drop) method has been widely used for the crack measurement of a structure and finite element analysis has been used for the derivation of calibration equations, which relates the potential drop with the crack depth. In this paper, finite element analyses were performed for semi-elliptical surface cracks with various crack shapes(a/c) and crack depths(a/t). As a result, a calibration equation has been derived for the measurement of a semi-elliptical surface crack in wide plates. Analytical results are compared with experimental results to evaluate the validity and the applicability of the derived equation. The proposed method is expected to provide efficient and accurate measurement of a surface crack during crack growth.

A Study on Substitution of Steel structure for Casting Frame (주조 프레임을 강 구조물로의 대체에 관한 연구)

  • 홍민성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.142-149
    • /
    • 1999
  • A machine frame has been manufactured by casting. However, due to the development of the industrial society, 3-D duties was refused. Especially, the declination of the casting industry makes it difficult to produce the frame. Many companies still manufacture the small casting products. The large casting products are extremely limited and manufactured for their own use. Therefore, it is difficult to keep the term of order. In this study, the characteristics of steel structure which is produced by welding were identified in the view of mechanical strength of steel structure which is produced by welding were identified in the view of mechanical strength to substitute steel structure for casting frame. But welding structure has the residual stress, HAZ and welding deformation. Residual stress and HAZ especially cause crack growth. The proposed steel structure, based on the simulation and experiment(tensile curve and S-N curve), can reduce not only the producting term but also the weight of the frame.

  • PDF

A Study on Effects of the Residual Stresses Around Cold Working Hole of the Aircraft Structure (항공기 구조물의 체결용 HOLE을 COLD WORKING 할때 생성되는 잔류응력의 영향연구)

  • 강수준;최청호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.101-109
    • /
    • 1999
  • The objective of this research is to study effects of the residual stresses on the crack growth and the life of the structure, caused by cold working around the hole of the aircraft structure which will be jointed by rivets and bolts, etc. The compensated Morrow's equation, by experimental data from the materials AL7075-T6 and AL2024-T3, is suggested to calculate the values of the fatigue life prediction of the structure. Also, the compensated Forman's equation, by experimental data from a material AL7075-T6, is suggested to calculate the values of the crack growth prediction of the structure. It is founded that the calculated values from the suggested equations are almost close to the known values of the fatigue life prediction and the crack growth prediction. It is shown that this paper, associated with an initial research on the effects of residual stresses around hole, gives a direction to study the problem at the aircraft maintenance field.

  • PDF

Effect of Geometrical Discontinuity on Ductile Fracture Initiation Behavior under Static Leading

  • An, G.B.;Ohata, M.;Toyoda, M.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • It is important to evaluate the fracture initiation behaviors of steel structure. It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of notch radius, which can elevate plastic constraint due to heterogeneous plastic straining on critical condition to initiate ductile crack using two-parameters. Hense, the crack initiation testing were conducted under static loading using round bar specimens with circumferential notch. To evaluate the stress/strain state in the specimens was used thermal elastic-plastic FE-analysis. The result showed that equivalent plastic strain to initiate ductile crack expressed as a function of stress triaxiality obtained from the homogeneous specimens with circumferential notched under static loading. And it was evaluated that by using this two-parameters criterion, the critical crack initiation of homogeneous specimens under static loading.

  • PDF

J-R Curve Evaluation According to the Crack Length Measurement Techniques Under Reverse Cyclic Loading (역사이클하중하에서의 균열길이 측정법에 따른 파괴저항곡선의 평가)

  • 원종일;우흥식;석창성
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.96-101
    • /
    • 1998
  • J-R curve tests were performed on 1T compact specimens of SA516 Gr. 70 carbon steels under reverse cyclic loading. A Direct-Current Potential Drop (DCPD) method, one of the nondestructive techniques to detect flaw of structure, is being increasingly used for monitoring crack initiation and stable crack growth in typical fracture mechanics specimens for J-R testing. In many aspects this method is simpler than the unloading compliance method. The objective of this paper is to evaluate the J-R Curve according to the crack length measurement techniques under reverse cyclic loading. In order to prove the reliability and repeatability of the DCPD method, the crack length measured by using DCPD method was compared to one determined from unloading compliance. Consequently, this DCPD method correlated well with J-R curves and crack extension measurements determined from unloading compliance method.

  • PDF