• Title/Summary/Keyword: structure crack

Search Result 1,243, Processing Time 0.024 seconds

Fatigue Crack Closure and Propagation Behavior Under Mixed-Mode Loading Observed by the Direct Measuring Method (직접측정법을 이용한 혼합모드 하중 하에서 피로균열의 닫힘과 전파거동)

  • Song Sam Hong;Seo Ki Jeong;Lee Jeong Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.152-158
    • /
    • 2005
  • The stress conditions acting on the practical structure are complex, and thus most cracks existing in the practical structures are under mixed-mode loading conditions. The effect of shear load component of mixed-mode loading acts more greatly in the stage of crack initiation and initial propagation than crack propagation stage. Hence, research on the behavior in the stage of crack initiation and initial propagation need to be examined in order to evaluate behavior of mixed-mode fatigue cracks. In this study, the crack tip displacement(CTD) was measured by using the direct measuring method(DMM). We examined the behavior at crack tip by determining crack opening load$(P_{op})$. From the test results, the propagation behavior of mixed-mode fatigue cracks was evaluated by considering mixed-mode crack closure. Also, we examined the characteristic of crack propagation under mixed-mode loading with crack propagation direction.

Physical interpretation of concrete crack images from feature estimation and classification

  • Koh, Eunbyul;Jin, Seung-Seop;Kim, Robin Eunju
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.385-395
    • /
    • 2022
  • Detecting cracks on a concrete structure is crucial for structural maintenance, a crack being an indicator of possible damage. Conventional crack detection methods which include visual inspection and non-destructive equipment, are typically limited to a small region and require time-consuming processes. Recently, to reduce the human intervention in the inspections, various researchers have sought computer vision-based crack analyses: One class is filter-based methods, which effectively transforms the image to detect crack edges. The other class is using deep-learning algorithms. For example, convolutional neural networks have shown high precision in identifying cracks in an image. However, when the objective is to classify not only the existence of crack but also the types of cracks, only a few studies have been reported, limiting their practical use. Thus, the presented study develops an image processing procedure that detects cracks and classifies crack types; whether the image contains a crazing-type, single crack, or multiple cracks. The properties and steps in the algorithm have been developed using field-obtained images. Subsequently, the algorithm is validated from additional 227 images obtained from an open database. For test datasets, the proposed algorithm showed accuracy of 92.8% in average. In summary, the developed algorithm can precisely classify crazing-type images, while some single crack images may misclassify into multiple cracks, yielding conservative results. As a result, the successful results of the presented study show potentials of using vision-based technologies for providing crack information with reduced human intervention.

Analytical Methodology and Design Consideration of Advanced Test Structure for the Micromechanical Characteristics of MEMS device (초소형 박막구조물의 기계적 특성 평가소자 설계 및 분석 기법)

  • Lee, Se-Ho;Park, Byung-Woo;kwon, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1010-1013
    • /
    • 1998
  • In micromechanical system (MEMS) such as microactuators. thin film has been widely used as structural material. MEMS materials have difference with bulk in terms of mechanical properties. So, we design the advanced test structure for micromechanical properties of MEMS. The designed structure includes the newly developed pre-crack and it is driven by electrostatic force. To measure the fracture toughness, the pre-crack formation in the test structure is developed with conventional etching process. The advanced test structure is fabricated by application of semiconductor technology. After this, we propose analytical methodology to evaluate the fracture toughness and fatigue properties through a prediction of crack behavior from the variations of stiffness and frequency. Additionally, life time of a mirror plane used in DVD(Digital Video Disk) is measured as a function of capacitance and applied voltage under the accelerated conditions. Ultimately, we propose the method to evaluate the micromechanical reliabilities of the MEMS materials using the advanced test structure.

  • PDF

Study on Corner Crack Protection for Various Thermal Environment in Flat Panel Displays (온도 환경 변화에 따른 평판형 TV 모서리 파손 방지를 위한 구조 설계 연구)

  • Kim, Min-Keun;Kim, Sung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.678-682
    • /
    • 2007
  • It is conducted that study on corner crack protection for various thermal environment in a flat panel display. Most of the consumer electronics consist of a plastic and a metal structure. And different properties of materials could cause failure of structural reliability due to the various operating temperatures. Especially for front bezel with thin and slender structure, the effect of temperature is significant, and the design for crack protection is crucial for thermal reliability of displays. In this study, it is prescribed the behavior of the front bezel in flat panel display for various operation temperatures and proposed design parameters to ensure the structural reliability of displays.

  • PDF

Application of Acoustic Emission Technique for Detection of Crack in Mortar and Concrete (모르터와 콘크리트의 균열검출을 위한 음향방출기법의 적용)

  • 진치섭;신동익;장종철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.739-744
    • /
    • 2000
  • Concrete structures generally have cracks, so for the safety and durability of structures, studies to detect cracks using nondestructive tests have been treated in great deal. In order to assure the reliability of concrete structure, microscopic fracture behavior and internal damage progress of concrete under the loading should be fully understood. The purpose of this study predicts location of initial crack and measures direction of crack propagation for on-line monitoring before the crack really grows in structures by using two-dimensional Acoustic Emission(AE) source location based on rectangular method with three-point bending test. This will allow efficient maintenance of concrete structure through monitoring of internal cracking based on AE method.

  • PDF

Evaluation of Injection Property of Crack Repair Method by Right Angle Drill Method with Packer (직각천공방식으로 패커를 설치한 균열보수공법의 보수재 주입특성)

  • 고진수;이성복;서치호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.581-586
    • /
    • 2003
  • The objective of this study is to evaluate the injection performance of crack repair method in concrete structure. To improve the quality of the concrete structure caulking material was injected into the crack of building that were planned to be demolished and injection properties of various repair method were compared and assessed according to type of crack. Results from the test showed that when cracks and injection port were integrated and the injection port wasn't blocked repair material was able to be injected even below around 40㎏/㎠ pressure. Moreover, effective pressure each type of packer showed wide range varying from 200-400㎏/㎠. As for drill method for injection port, core drill method has shown to be more effective compared to the air pump method

  • PDF

A Study on the Safety Assessment of Curved Hollow RC Slab Bridge Structures (곡선형 RC 중공 슬래브교의 안전성 평가 사례 연구)

  • Chai, Won-Kyu;Jo, Byung-Wan;Kim, Kwang-Il
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.96-100
    • /
    • 2006
  • In this thesis, the crack investigation, the damage investigation, the drawing check, and the structural analysis were performed on a curved hollow RC(reinforced concrete) slab bridge structure to assess the structural safety of that. From the crack investigation result, main reason of crack occurrence is guessed with travelling of the large truck. Therefore reinforcement of slab structure is necessary by using the steel plate. When structural analysis, the straight beam model, the curved beam model, and the curved plate model is used. From the results of structural analysis for curved hollow RC slab bridge, the maximum bending moment and the maximum shear force was not a difference in each models. But the vertical displacement of mid span using the curved beam model was greater than that using the other models.

A Study on Measurement of Crack Length by using Laser Speckle Interferometry (레이저 스페클 간섭을 이용한 균열 길이 측정에 관한 연구)

  • Kang, Young-June;Bae, Jin-Kil;Ryu, Weon-Jae;Park, Nan-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.34-41
    • /
    • 2001
  • More accurate and fast inspection method for mechanical parts and structure is required to guarantee the safety. Conventional methods using compliance method, eddy current method, ultrasonic wave, acoustic emission for non-destructive testing in mechanical parts and structure have been performed as the method of contact with objects to be inspected. With this reason these methods have been taken relatively much time, money, and manpower. In this study, in order to overcome these shortcomings, we used In-plane Electronic Speckle pattern Interferometry(In-plane ESPI) that was full-field measurement and noncontact method. We detected the cracks of the specimen at a real time and measured the length of the crack by using In-place ESPI system. Finally, we compared this results with conventional microscope method.

  • PDF

Crack Propagation Analysis by the FRANC3D (FRANC3D에 의한 균열진전해석)

  • 김종수;장희석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.50-54
    • /
    • 1997
  • To trace crack propagation process in cracked structure is very important thing in view of maintenance and repair of the structure. But it is a little troublesome work due to the continuous remesh work, because a new crack tip is formed in each propagation step. It is more difficult if it should be studied in the three dimensional region. By the way, lately the CFG(Cornell Fracture Group) makes the crack propagation analysis in three dimensional problems possible by developing a new code for them. The use of the code will be expected to spread widely. So a brief introduction of the contents of the code via the theorems used and numerical examples is the purpose of this paper.

  • PDF

Delamination analysis of inhomogeneous viscoelastic beam of rectangular section subjected to torsion

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.69-81
    • /
    • 2023
  • This paper considers a delamination analysis of a statically undetermined inhomogeneous beam structure of rectangular section with viscoelastic behavior under torsion. The beam is built in at its two ends. The beam has two longitudinal inhomogeneous layers with a delamination crack between them. A notch is made in the upper crack arm. The external torsion moment applied on the beam is a function of time. Under these conditions, the beam has one degree of indeterminacy. In order to derive the strain energy release rate, first, the static indeterminacy is resolved. Then the strain energy release rate is obtained by analyzing the balance of the energy with considering the viscoelastic behavior. The strain energy release rate is found also by analyzing the compliance of the beam for checkup. Solution of the strain energy release rate in a beam without a notch in the upper crack arm is derived too. In this case, the beam has two degrees of static indeterminacy (the torsion moment in the upper crack arm is treated as an additional internal redundant unknown). A parametric investigation of the strain energy release rate is carried-out.