• Title/Summary/Keyword: structure and function of plant

Search Result 193, Processing Time 0.02 seconds

Genes Involved in Symbiotic Nitrogen Fixation (질소고정 공생관계 관련 유전자)

  • 안정선
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.81-101
    • /
    • 1987
  • In an attempt to revies the informations about genes involved in symbiotic nitrogen fixation, developmental processes in which host plant interact with microbe during nodule formation were introduced first. The structure, function and regulation of the genes discussed were mainly about microbial genes; those involved in the process of nodule formation (nod-genes) and of nitrogen fixation (nif-genes). Informations about the host genes involved in the symbiosis were discussed briefly.

  • PDF

Structure and Function of the Phytochromes: Light Regulation of Plant Growth and Development

  • Park, Chung-Mo;Song, Pill-Soon
    • Journal of Photoscience
    • /
    • v.10 no.1
    • /
    • pp.157-164
    • /
    • 2003
  • Light exerts two primary roles in plant growth and development. Plants acquire all biochemical energy required for growth and propagation solely from light energy via photosynthesis. In addition, light serves as a medium through which plants recognize environmental fluctuations, such as photoperiod and presence of neighboring animals and plants. Plants therefore constantly monitor the direction, intensity, duration, and wavelength of environmental light and integrate these light signals into the intrinsic regulatory programs to achieve an optimized growth in a given light condition. Although light regulates all aspects of plant growth and developmental aspects, the molecular mechanisms and signaling cascades involved have not been well established until recently. However, recent advances in genetic tools and plant transformation techniques greatly facilitated the elucidation of molecular events in plant photomorphogenesis. This mini-review summarizes the gist of recent findings in deetiolation and suppression of shade avoidance response as classic examples of the phytochrome-mediated photomorphogenesis.

  • PDF

Structure and action mechanism of humic substances for plant stimulations

  • Jeon, Jong-Rok;Yoon, Ho Young;Shin, Gyeong-Im;Jeong, Song Yi;Cha, Joon-Yung;Kim, Woe-Yeon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.175-179
    • /
    • 2018
  • Humic substances that can be obtained from coal resources such as leonardite in a bulk scale have been employed as crop stimulators and soil conditioners. The polymeric organics containing a variety of aromatic and aliphatic structures are known to activate plants in a multifunctional way, thus resulting in enhanced germination rate and abiotic stress resistance concomitant with induction of numerous genes and proteins. Although detailed structural-functional relationship of humic substances for plant stimulations has not been deciphered yet, cutting-edge analytical tools have unraveled critical features of humic architectures that could be linked to the action mechanisms of their plant stimulations. In this review article, we introduce key findings of humic structures and related biological functions that boost plant growth and abiotic stress resistance. Oxygen-based functional groups and plant hormone-like structures combined with labile and recalcitrant carbon backbones are believed to be critical moieties to induce plant stimulations. Some proteins such as HIGH-AFFINITY $K^+$ TRANSPORTER 1, phospholipase A2 and $H^+$-ATPase have been also recognized as key players that could be critically involved in humic substance-driven changes in plant physiology.

Oomycetes RXLR Effectors Function as Both Activator and Suppressor of Plant Immunity

  • Oh, Sang-Keun;Kamoun, Sophien;Choi, Doil
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.209-215
    • /
    • 2010
  • Plant pathogenic oomycetes, such as Phytophthora spp., are the causal agent of the most devastating plant diseases. During infection, these pathogens accomplish parasitic colonization of plants by modulating host defenses through an array of disease effector proteins. These effectors are classified in two classes based on their target sites in the host plant. Apoplastic effectors are secreted into the plant extracellular space, and cytoplasmic effectors are translocated inside the plant cell, through the haustoria that enter inside living host cell. Recent characterization of some oomycete Avr genes showed that they encode effector protein with general modular structure including N-terminal conserved RXLR-DEER motif. More detailed evidences suggest that these AVR effectors are secreted by the pathogenic oomycetes and then translocated into the host plant cell during infection. Recent findings indicated that one of the P. infestans effector, Avrblb2, specifically induces hypersensitive response (HR) in the presence of Solanum bulbocastanum late blight resistance genes Rpi-blb2. On the other hand, another secreted RXLR protein PexRD8 originated from P. infestans suppressed the HCD triggered by the elicitin INF1. In this review, we described recent progress in characterized RXLR effectors in Phytophthora spp. and their dual functions as modulators of host plant immunity.

comparative Study of Analytical Modal Properties of Instrumentation Cabinet of Nuclear Power Plant (모델링 방법의 차이에 따른 원전계측캐비넷의 동특성 해석 결과 비교분석)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.186-192
    • /
    • 1999
  • Safety-related equipments of nuclear power plant must be seismically qualified to demonstrate their ability to function as required during and/or after the earthquake, The seismic qualification is usually achieved through analysis and testing. Analysis method is preferably adopted for structurally simple equipments which are easy to be mathematically modeled. However even for relatively complex equipments analysis method is occasionally used for computing the input motion or supporting information for the component test followed. Electrical cabinet is a typical example for which analysis method is combinedly used with test to get modal properties of the enclosing cabinet structure. Usually the structural elements and doors of the cabinet are loosely interconnected with small-size bolts or spot welding. Therefore cabinet-type equipment usually has high and complex nonlinear properties which are not easily idealized by simple practical modeling techniques. in this paper with respect to a typical cabinet-type structure(instrumentation cabinet of nuclear power plant) a comparative study has been performed between three different state-of-the -art modeling techniques: lumped mass model frame model and FEM modal. Form the study results it has been found that modal properties of the cabinet-type structure in the elastic behavior range can be reasonably computed through any type of modeling techniques in the practice with slight modification of model properties to get better accuracy. However it needs additional modeling techniques to get reasonable results up to nonlinear range.

  • PDF

The Effects of Animation-based Instruction using "Magic School Bus" on Elementary Students' Level of Understanding and Interests on Plant's Structure and Function ('신기한 스쿨버스' 만화영화 도입이 식물의 구조와 기능에 대한 초등학생의 개념 이해와 흥미에 미치는 영향)

  • Choi, Seop;Kim, Heui-Baik
    • Journal of Korean Elementary Science Education
    • /
    • v.32 no.4
    • /
    • pp.379-392
    • /
    • 2013
  • The purpose of this study was to examine the effects of animation-based instruction on elementary students' level of understanding and interest on a plant's structure and function, using "Magic School Bus(Joanna Cole, Bruce Degen, 1986)". The understanding and interest measurements were administered to 99 fifth grade students at a elementary school located in Seoul. The study examined the changes in understanding and interest through pre-test and post-test of the two groups. Intensive interviews were conducted to find factors that enhance understanding and interest. Three key findings were revealed from the results. First, the animation-based instruction enhanced the level of understanding in the experimental group compared to the control group. Second, animation-based instruction made high-achieving students enhance their interest in topic component and attitude component. And, animation-based instruction did not led low-achieving students to increase their interest in the topic component and attitude component. We suggest that animation-based instruction positively influences students' understanding, but its effects on students' interest are dependent on their conceptual understanding of the topic.

Noise-reduction Function and its Affecting Factors of Plant Communities

  • Song, Xiu-hua;Wu, Qian-qian;Yu, Dong-ming;PIAO, Yong-ji;Cho, Tae-Dong
    • Journal of Environmental Science International
    • /
    • v.25 no.10
    • /
    • pp.1407-1415
    • /
    • 2016
  • In this study, we investigated the relationship between noise reduction and the community structure of nine groups of typical plant communities as well as the reduction in noise at different frequencies. The semantic differential method was adopted to explore the perception of noise reduction. The results indicated that there was a significantly positive correlation between noise reduction and coverage, a significantly negative correlation between noise reduction and bifurcate height, and a negative correlation between noise reduction and bare rate. However, there was no significant correlation between noise reduction and height, diameter at breast height, or crown width. The reduction of middle-frequency noise was better than that of low- and high-frequency noise. The indicators "quiet" and "calm" showed that plant communities could reduce the noise perceived by humans. However, overly dense woodland caused nervousness, fear, depression, and other negative effects. Relatively open environments and those with large forest gaps obtained the highest evaluation.

Functional switching of eukaryotic 2-Cys peroxiredoxins from peroxidases to molecular chaperones in response to oxidative stress

  • Jang, Ho-Hee;Lee, Sang-Yeol
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.40-64
    • /
    • 2005
  • Much biochemical information on peroxiredoxins (Prxs) has been reported but a genuine physiological function for these proteins has not been established. We show here that two cytosolic yeast Prxs, cPrxI and II, exist in a variety of forms that differ in their structure and molecular weight (MW) and that they can act both as a peroxidase and as a molecular chaperone. The peroxidase function predominates in the lower MW proteins, whereas the chaperone function is more significant in the higher MW complexes. Oxidative stress and heat shock exposure of yeasts causesthe protein structures of cPrxI and II to shift from low MW species to high MW complexes. This triggers a peroxidase-to-chaperone functional switch. These in vivo changes are primarily guided by the active peroxidase site residue, $Cys^{47}$, which serves as an efficient $'H_2O_2-sensor'$ in the cells. The chaperone function of the proteins enhances yeast resistance to heat shock.

  • PDF

Use of the Quantitatively Transformed Field Soil Structure Description of the US National Pedon Characterization Database to Improve Soil Pedotransfer Function

  • Yoon, Sung-Won;Gimenez, Daniel;Nemes, Attila;Chun, Hyen-Chung;Zhang, Yong-Seon;Sonn, Yeon-Kyu;Kang, Seong-Soo;Kim, Myung-Sook;Kim, Yoo-Hak;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.944-958
    • /
    • 2011
  • Soil hydraulic properties such as hydraulic conductivity or water retention which are costly to measure can be indirectly generated by soil pedotransfer function (PTF) using easily obtainable soil data. The field soil structure description which is routinely recorded could also be used in PTF as an input to reduce the uncertainty. The purposes of this study were to use qualitative morphological soil structure descriptions and soil structural index into PTF and to evaluate their contribution in the prediction of soil hydraulic properties. We transformed categorical morphological descriptions of soil structure into quantitative values using categorical principal component analysis (CATPCA). This approach was tested with a large data set from the US National Pedon Characterization database with the aid of a categorical regression tree analysis. Six different PTFs were used to predict the saturated hydraulic conductivity and those results were averaged to quantify the uncertainty. Quantified morphological description was successively used in multiple linear regression approach to predict the averaged ensemble saturated conductivity. The selected stepwise regression model with only the transformed morphological variables and structural index as predictors predicted the $K_{sat}$ with $r^2$ = 0.48 (p = 0.018), indicating the feasibility of CATPCA approach. In a regression tree analysis, soil structure index and soil texture turned out to be important factors in the prediction of the hydraulic properties. Among structural descriptions size class turned out to be an important grouping parameter in the regression tree. Bulk density, clay content, W33 and structural index explained clusters selected by a two step clustering technique, implying the morphologically described soil structural features are closely related to soil physical as well as hydraulic properties. Although this study provided relatively new method which related soil structure description to soil structure index, the same approach should be tested using a datasets containing the actual measurement of hydraulic properties. More insight on the predictive power of soil structure index to estimate hydraulic properties would be achieved by considering measured the saturated hydraulic conductivity and the soil water retention.

Variable structure control system design guaranteeing continuity of control signal

  • Park, Kang-Bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.16-19
    • /
    • 1996
  • In this paper, a sliding mode control scheme that guarantees the smoothness of the control signal and the exponential error convergence is proposed for robot manipulators. The proposed method inserts a low pass filter (LPF) in front of the plant, and the virtual controller is designed for the virtual plant - the combination of the LPF and the robot manipulator. The virtual control signal contains high frequency components because of a switching function. The real control signal, however, always shows a smooth curve since it is an output of the LPF. In addition to the smoothness of the control signal is always assured, the overall system is in the sliding mode at all times, that is, its performance is always invariant under the existence of parameter uncertainties and external disturbances. The closed-loop system is shown to be globally exponentially stable.

  • PDF