Structure and Function of the Phytochromes: Light Regulation of Plant Growth and Development

  • Park, Chung-Mo (Kumho Life & Environmental Science Laboratory) ;
  • Song, Pill-Soon (Kumho Life & Environmental Science Laboratory, University of Nebraska-Lincoln)
  • Published : 2003.04.01

Abstract

Light exerts two primary roles in plant growth and development. Plants acquire all biochemical energy required for growth and propagation solely from light energy via photosynthesis. In addition, light serves as a medium through which plants recognize environmental fluctuations, such as photoperiod and presence of neighboring animals and plants. Plants therefore constantly monitor the direction, intensity, duration, and wavelength of environmental light and integrate these light signals into the intrinsic regulatory programs to achieve an optimized growth in a given light condition. Although light regulates all aspects of plant growth and developmental aspects, the molecular mechanisms and signaling cascades involved have not been well established until recently. However, recent advances in genetic tools and plant transformation techniques greatly facilitated the elucidation of molecular events in plant photomorphogenesis. This mini-review summarizes the gist of recent findings in deetiolation and suppression of shade avoidance response as classic examples of the phytochrome-mediated photomorphogenesis.

Keywords

References

  1. Genes Dev. v.14 Light: an indicator of time and place Neff,M.M.;Fankhauser,C.;Chory,J.
  2. Annu. Rev. Plant Physiol. Plant Mol. Biol. v.47 Light control of seedling development von Arnim, A. G.;Deng,X.W.
  3. Nature v.401 Phytochrome signaling is mediated through nucleoside diphosphate kinase 2 Choi,G.;Yi,H.;Lee,J.;Kwon,Y.K.;Soh,M.S.;Shin,B.;Luka,Z.;Hahn,T.R.;Song,P.S.
  4. Science v.284 PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis Fankhauser,C.;Yeh,K.C.;Lagarias,J.C.;Zhang,H.;Elich,T.D.;Chory,J.
  5. Cell v.95 PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein Ni,M.;Tepperman,J.M.;Quail,P.H.
  6. Plant Cell v.13 Overexpression of the heterotrimetric G-protein alpha-subunit enhances phytochrome-mediated inhibition of hypocotyl elongation n Arabidopsis Okamoto,H.;Matsui,M.;Deng,X.W.
  7. Cell v.105 Light and brassinosteroid signals are integrated via a dark-induced small G-protein in etiolated seedling growth Kang,J.G.;Ju,Y.;Kim,D.H.;Chung,K.S.;Fujioka,S.;Kim,J.I.;Dae,H.W.;Yoshida,S.;Takatsuto,S.;Song,P.S.;Park,C.M.
  8. Cell v.73 Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways Neuhaus,G.;Bowler,C.;Kern,R.;Chua,N.H.
  9. Science v.291 SUB1, an Arabidopsis Ca$^{2+}$-binding protein involved in cryptochrome and phytochrome coaction Guo,H.;Mockler,T.;Duong,H.;Lin,C.
  10. Curr. Biol. v.9 Light receptor kinases in plants Fankhauser,C.;Chory,J.
  11. Mol. Cell v.1 The CRY1 blue light receptor of Arabidopsis interacts with phytochrome A in vitro Ahmad,M.;Jarillo,J.A.;Smirnova,O.;Cashmore,A.R.
  12. Plant Physiol. v.118 Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development Neff,M.M.;Chory,J.
  13. Development v.126 Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction Mockler,T.C.;Guo,H.;Yang,H.;Duong,H.;Lin,C.
  14. Plant Physiol. v.126 Analysis of flowering time control in Arabidopsis by comparison of double and triple mutants Reeves,P.H.;Coupland,G.
  15. Nature v.408 Functional interaction of phytochrome B and cryptochrome 2 Mas,P.;Devlin,P.F.;Panda,S.;Kay,S.A.
  16. Plant Physiol. v.128 Functional properties and regulatory complexity of a minimal RBCS light-responsive unit activated by phytochrome, cryptochrome, and plastid signals Martinez-Hernandez,A.;Lopez-Ochoa,L.;Arguello-Astorge,G.;Herrera-Estrella,L.
  17. Science v.272 A role for brassinosteroids in light-dependent development of Arabidopsis Li,J.;Nagpal,P.;Vitart,V.;McMorris,T.C.;Chory,J.
  18. Proc. Natl. Acad. Sci. USA v.96 BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis Neff,M.M.;Nguyen,S.M.;Malancharuvil,E.J.;Fujioka,S.;Noguchi,T.Seto,H.;Tsubuki,M.;Honda,T.;Takatsuto,S.;Yoshida,S.;Chory,J.
  19. Annu. Rev. Plant Physiol. Plant Mol. Biol. v.49 Brassinosteroids: Essential regulators of plant growth and development Clouse,S.D.;Sasse,J.M.
  20. Curr. Opin. Plant Biol. v.3 Brassinosteroid signal transduction: still casting the actors Schumacher,K.;Chory,J.
  21. Semin. Cell. Dev. Biol. v.11 Interdomain crosstalk in the phytochrome molecules Park,C.M.;Bhoo,S.H.;Song,P.S.
  22. Proc. Natl. Acad. Sci. USA v.93 Chromophore-bearing NH₂-terminal domains of phytochromes A and B determine their photosensory specificity and differential light lability Wager,D.;Fairchild,C.D.;Kuhn,R.M.;Quail,P.H.
  23. Nature v.400 Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light Ni,M.;Tepperman,J.M.;Quail,P.H.
  24. J. Biol. Chem. v.260 Structure function studies on phytochrome: Identification of light-induced conformational changes in 124-kDa Avena phytochrome in vitro Lagarias,J.C.;Mercurio,F.M.
  25. Biochim Biophys Acta v.996 Interactions between native oat phytochrome and tetraphyrroles Singh,B.R.;Song,P.S.
  26. Photochem. Photobiol. v.56 The distance between the phytochrome chromophore and the N-terminal chain decreased during phototransformation: A novel fluorescence energy transfer method using labeled antibody fragments Farrens,D.L.;Cordonnier,M.M.;Pratt,L.H.;Song,P.S.
  27. Biochemistry v.31 N-terminal domain of Avena phytochrome: Interactions with sodium dodecyl sulfate micelles and N-terminal chain truncated phytochrome Parker,W.;Partis,M.;Song,P.S.
  28. Biochemistry v.33 Phototransformation of pea phytochrome A induced an increase in α-helical folding of the apoprotein: comparison with a monocot phytochrome A and CD analysis by different methods Deforce,L.;Tokutomi,S.;Song,P.S.
  29. Biochemistry v.33 A conformational change associated with the phototransformation of Pisum phytochrome A as probed by fluorescent quenching Wells,T.A.;Nakazawa,M.;Manabe,K.;Song,P.S.
  30. Biochemistry v.38 Protonation state and structural changes of the tetraphyrrole chromophore during the phototransformation of phytochrome: A resonance spectroscopic study Kneip,C.;Hildebrandt,P.;Schlamann,W.;Braslavsky,S.E.;Mark,F.;Schaffner,K.
  31. Photochem. Photobiol. v.45 Comparison of the protein conformations between different forms (Pr vs. Pfr) of native (124 kDa) and degraded (118/114 kDa) phytochromes from Avena Vierstra,R.D.;Quail,P.H.;Hahn,T.R.;Song,P.S.
  32. J. Photochem. Photobiol. B v.2 The molecular topography of phytochrome: Chromophore and apoprotein Song,P.S.
  33. Planta v.164 The role of separate molecular domains in the structure of phytochrome from etiolated Avena sativa L Jones,A.M.;Vierstra,R.D.;Daniels,S.M.;Quail,P.H.
  34. Z. Naturforsch v.44c Electrophoresis and electrofocusing of phytochrome from etiolated Avena sativa L Schendel,R.;Rudiger,W.
  35. Biochemistry v.37 Surface topography of phytochrome A deduced from specific chemical modification with iodoacetamide Lapko,V.N.;Jiang,X.Y.;Smith,D.L.;Song,P.S.
  36. Ind. J. Biochem. Biophys. v.33 Light signal transduction mdeiated by phytochromes: Preliminary studies and possible approaches Song,P.S.;Sommer,D.;Wells,T.A.;Hahn,T.R.;Park,H.J.;Bhoo,S.H.
  37. Science v.284 SPA1, a WD-repeat protein specific to phytochrome A signal transduction Hoecker,U.;Teppermann,J.M.;Quail,P.H.
  38. Nature v.400 Tripping the light fantastic Smith,H.
  39. Proc. Natl. Acad. Sci. USA v.95 Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry Yeh,K.C.;Lagarias,J.C.
  40. Semin. Cell Dev. Biol. v.11 Phytochromes as light-modulated protein kinases Fankhauser,C.
  41. Protein Sci. v.8 Mass spectrometric characterization of oat phytochrome A: isoforms and posttransformational modifications Lapko,V.N.;Jiang,X.Y.;Smith,D.L.;Song,P.S.
  42. Plant Physiol. v.124 Aux/IAA proteins are phosphorlated by phytochrome in vitro Colon-Carmona,A.;Chen,D.L.;Yeh,K.C.;Abel,S.
  43. J. Biol. Chem. v.261 Phosphorylation of Avena phytochrome in vitro as a probe of light-induced conformational changes Wong,Y.S.;Cheng,H.C.;Walsh,D.A.;Lagarias,J.C.
  44. Biochemistry v.29 Phosphopeptide mapping of Avena phytochrome phosphorylated by protein kinases in vitro McMichael,R.W.Jr;Lagarias,J.C.
  45. Biochemistry v.36 Posttranslational modification of oat phytochrome A: Phosphorylation of a specific serine in a multiple serine cluster Lapko,V.N.;Jiang,X.Y.;Smith,D.L.;Song,P.S.
  46. Annu Rev Biophys Biomol Struct. v.22 The effects of phosphorylation on the structure and function of proteins Johnson,L.N.;Barford,D.
  47. J. Biol. Chem. v.274 Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47(phox): Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intra-molecular interaction in p47(phox), thereby activating the oxidase Ago,T.;Nunoi,H.;Ito,T.;Sumimoto,H.
  48. Biochemistry v.39 Effects of phosphorylation on binding of catecholamines to tyrosine hydroxylase: Specificity and thermodynamics Ramsey,A.J.;Fitzpatrick,P.F.
  49. Science v.266 Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase Stone,J.M.;Collinge,M.A.;Smith,R.D.;Horn,M.A.;Walker,J.C.
  50. Science v.280 A signaling complex of Ca${2+}$-calmodulin-dependent protein kinase Ⅳ and protein phosphatase 2A Westphal,R.S.;Anderson,K.A.;Means,A.R.;Wadzinski,B.E.
  51. Curr. Opin. Cell Biol. v.12 Protein phosphatases and the regulation of mitogen-activated protein kinase signaling Keyse,S.M.
  52. Plant Mol. Biol. v.43 Multiple cyclin-dependent kinase complexes and phosphatases control G2/M progression in alfalfa cells Meszaros,T.;Miskolczi,P.;Ayaydin,F.;Pettko-Szandtner,A.;Peres,A.;Magyar,Z.;Horvath,G.V.;Bako,L.;Feher,A.;Dudits,D.
  53. Plant Cell v.14 "Cross-talk" between cell division and development in plants Boniotti,M.B.;Griffith,M.E.
  54. EMBO J. v.12 Protein phosphatase activity is required for light-inducible gene expression in maize Sheen,J.
  55. Proc. Natl. Acad. Sci. USA v.91 Light induces rapid changes of the phosphorylation pattern in cytosol of evacuolated parsely protoplasts Harter,K.;Frohnmeyer,H.;Kircher,S.;Kunkel,T.;Muhlbauer,S.;Schafer,E.
  56. Mol. Gen. Genet. v.251 Phosphorylation/dephosphorylation steps are key events in the phytochrome-mediated enhancement of nitrate reductase mRNA levels and enzyme activity in maize Chandok,M.R.;Sopory,S.K.
  57. Annu. Rev. Cell Dev. Biol. v.13 Light control of plant developement Fankhauser,C.;Chory,J.
  58. Science v.294 Direct interaction of Arabidopsis cryptochromes with COP1 in light control development Wang,H.;Ma,L.G.;Li,J.M.;Zhao,H.Y.;Deng,X.W.
  59. Plant Mol. Biol. v.26 GTP-binding proteins in plants: new members of an old family Ma,H.
  60. Physiol. Rev. v.81 Small GTP-binding proteins Takai,Y.;Sasaki,T.;Matozaki,T.
  61. Proc. Natl. Acad. Sci. USA v.92 Location of light-repressible, small GTP-binding protein of the YPT/rab family in the growing zone of etiolated pea stems Nagano,Y.;Okada,Y.;Narita,H.;Asaka,Y.;Sasaki,Y.
  62. FEBS Lett. v.282 G-proteins in etiolated Avena seedlings: Possible phytochrome regulation Romero,L.C.;Sommer,D.;Gotor,C.;Song,P.S.
  63. Plant J. v.21 Modes of interaction between the Arabidopsis Rab protein, Ara4, and its putative regulator molecules revealed by a yeast expression system Ueda,T.;Matsuda,N.;Uchimiya,H.;Nakano,A.
  64. Plant Physiol. v.120 Identification of cis-regulatory element involved in phytochrome down-regulated expression of the pea small G-protein gene pra2 Inaba,T.;Nagano,Y.;Sakakibara,T.;Sasaki,Y.
  65. J. Biol. Chem. v.275 DE1, a 12-base pair cis-regulatory element sufficient to confer dark-inducible and light down-regulated expression to a minimal promoter in pea Inaba,T.;Nagano,Y.;Reid,J.B.;Sasaki,Y.
  66. Proc. Natl. Acad. Sci. USA v.90 Phytochrome-regulated expression of the genes encoding the small GTP-binding proteins in peas Yoshida,K.;Nagano,Y.;Murai,N.;Sasaki,Y.
  67. Plant Physiol. v.40 Distribution of phytochrome in etiolated seedlings Briggs,W.R.;Siegelman,H.W.
  68. Nuc. Acid Res. v.29 A novel class of plant-specific zine finger-dependent DNA-binding protein that binds to A/T-rich DNA spquences Nagano,Y.;Furuhashi,H.;Inaba,T.;Sasaki,Y.
  69. J. Biol. Chem. v.276 Trihelix DNA-binding protein with specificities for two distinct cis-elements: both important for light down-regulated and dark-inducible gene expression in higher plants Nagano,Y.;Inaba,T.;Furuhashi,H.;Sasaki,Y.
  70. Science v.286 A pair of related genes with antagonistic roles in mediating flowering signals Kobayashi,Y.;Kaya,H.;Goto,K.;Iwabuchi,M.;Araki,T.
  71. Genes Dev. v.14 The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis Lee,H.;Suh,S.S.;Park,E.;Cho,E.;Ahn,J.H.;Kim,S.G.;Lee,J.S.;Kwon,Y.M.;Lee,I.
  72. Science v.288 Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis Samach,A.;Onouchi,H.;Gold,S.E.;Ditta,G.S.;Schwarz-Sommer,Z.;Yanofsky,M.F.;Coupland,G.
  73. Bioassays v.19 The phytochromes: A biochemical mechanism of signaling in sight? Quail,P.H.