• Title/Summary/Keyword: structural voids

Search Result 96, Processing Time 0.025 seconds

Effect of structural voids on mesoscale mechanics of epoxy-based materials

  • Tam, Lik-ho;Lau, Denvid
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.355-369
    • /
    • 2016
  • Changes in chemical structure have profound effects on the physical properties of epoxy-based materials, and eventually affect the durability of the entire system. Microscopic structural voids generally existing in the epoxy cross-linked networks have a detrimental influence on the epoxy mechanical properties, but the relation remains elusive, which is hindered by the complex structure of epoxy-based materials. In this paper, we investigate the effect of structural voids on the epoxy-based materials by using our developed mesoscale model equipped with the concept of multiscale modeling, and SU-8 photoresist is used as a representative of epoxy-based materials. Developed from the results of full atomistic simulations, the mesoscopic model is validated against experimental measurements, which is suitable to describe the elastic deformation of epoxy-based materials over several orders of magnitude in time- and length scales. After that, a certain quantity of the structure voids is incorporated in the mesoscale model. It is found that the existence of structural voids reduces the tensile stiffness of the mesoscale epoxy network, when compared with the case without any voids in the model. In addition, it is noticed that a certain number of the structural voids have an insignificant effect on the epoxy elastic properties, and the mesoscale model containing structural voids is close to those found in real systems.

Analysis for Location of Reinforcing Bars and Detection of Shape of Voids in Concrete Structures using Electromagnetic Radar (전자파 레이더법에 의한 콘크리트 내 철근위치 및 공동형상 해석에 관한 연구)

  • 박석균
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.471-476
    • /
    • 2003
  • The presence of voids under pavements or behind tunnel linings results in their deterioration. To detect these voids effectively by non-destructive tests, a method using radar was proposed. In this research, not only the detection of shape of voids, but also the location of reinforcing bars by radar image analysis is investigated. The experiments and image processing were conducted to detect voids and to locate reinforcing bars in or under concrete pavements (or tunnel linings) with reinforcing bars. From the results, the fundamental algorithm for tracing the reinforcing bars and voids, improving the horizontal resolution of the object image and detecting shape of objects, was verified.

  • PDF

Development of a Numerical Method for Effective Elastic Analysis of Unbounded Solids with Anisotropic Inclusions (이방성 함유체가 포함된 무한고체의 효과적인 탄성해석을 위한 수치해석 방법 개발)

  • 최성준;이정기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.41-52
    • /
    • 1998
  • A volume integral equation method and a mixed volume and boundary integral equation method are presented for the solution of plane elastostatic problems in solids containing orthotropic inclusions and voids. The detailed analysis of the displacement and stress fields are developed for orthotropic cylindrical and elliptic-cylindrical inclusions and voids. The accuracy and effectiveness of the new methods are examined through comparison with results obtained from analytical and boundary integral equation methods. Through the analysis of plane elastostatic problems in unbounded isotropic matrix containing orthotropic inclusions and voids, it is established that these new methods are very accurate and effective for solving plane elastostatic and elastodynamic problems in unbounded solids containing general anisotropic inclusions and voids or cracks.

  • PDF

Ultrasonic Testing of Voids inside Mortar for Structural Integrity Evaluation (구조물 건전도 평가를 위한 모르타르 내 공극 초음파 탐상)

  • Cho, Youn-jin;Rhim, Hong-Chul;Kim, Dae-You
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.91-92
    • /
    • 2016
  • Structural integrity of reinforced concrete structures including nuclear power plants needs to be evaluated on a regular basis. Deterioration inside the concrete structures can be represented by voids. In this study, the varied volume fraction of voids inside mortar specimens was studied as a parameter using ultrasonic testing equipments. Both direct and indirect measurement methods were employed. The results show that there is a clear distinction between the specimens with different void volume fractions.

  • PDF

Patterns of Resistographs for Evaluating Deteriorated Structural Wood Members

  • LEE, Jun Jae;KIM, Kwang Chul;BAE, Mun Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.45-54
    • /
    • 2003
  • The density and strength of wood is affected by degradations and defects, such as voids and knots. Old wooden structures such as traditional cultural properties have been deteriorated by these types of defects. They were evaluated by a visual observation that is difficult to evaluate the inner deterioration in structures. In this study, three nondestructive testing techniques were investigated to detect the wooden structural members. Ultrasonic stress wave tests, drilling resistance tests and visual inspections were used to examine the structural wood members. Patterns of Resistograph using by drilling resistance tests could indicate the features of internal wood such as voids, knots, decay, fungi, and so on. The technique just like as ultrasonic stress wave tests, however, difficult to detect exactly area where small amounts of internal deterioration in logs are. In spite of results of ultrasonic stress wave test, the internal deterioration of wooden structural members could be evaluated by the relationship between ultrasonic stress wave tests and drilling resistance tests.

Detecting Pattern of Voids in Concrete Using Ultrasonic Image Processing Technique (초음파 화상처리기법을 이용한 콘크리트 내부공동의 형상검출에 관한 연구)

  • 박석균;이한범;오윤식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.783-788
    • /
    • 2001
  • Voids created with concrete construction or deterioration result in serious weakness from the aspects of both structural and durable function. Ultrasonic method using image processing technique was used for detecting pattern of voids in concrete in this study Experimental investigation was carried out for three types(patterns) of void in concrete. The effect of curing period of concrete and ultrasonic measurement method was also investigated. As a result it has been verified that the semi-direct measurement method is more effective than the other methods for detecting pattern of voids in concrete in ultrasonic method using image processing technique. The longer the curing period of concrete is, the better the detection accuracy of void pattern can be obtained.

  • PDF

Detection of Voids inside Concrete Using Radar (레이더를 이용한 콘크리트내 공동 탐사)

  • 임홍철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.817-820
    • /
    • 2000
  • Existence of void or delamination inside building foundation or tunneling lining can cause serious problems in structural safety. Therefore, 0probing of such voids in architectural and civil structures is an important process in evaluating the overall integrity of the structures. In this study, the radar method has been examined in its use in detecting voids inside concrete specimens. The dimensions of the specimens are 1,000 mm(width) $\times$ 600 mm (height) $\times$ 140 mm (thickness). A void is embedded inside concrete specimens with the dimensions of 200 mm(width) $\times$ 600 mm (height) $\times$ 50 mm (thickness). Concrete cover depth of 30 mm, 60 mm is studied for comparison. In both cases, the voids is located with 1 GHz antenna.

  • PDF

Effect of Surface Film on Void Behavior in Composite Integrated Structure (표면접착필름이 복합재 일체형 구조물에서의 기공 거동에 미치는 영향)

  • Park, Dong-Cheol;Kim, Yun-Hae
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.147-152
    • /
    • 2020
  • In this study, void behavior of composite laminate by local internal pressure gradient due to structural geometry and surface film application condition was experimentally evaluated through fabrication of spar/skin integrated structure specimens. Viscosity comparison and thermal analysis for both carbon fiber prepreg and surface film were conducted and cure characteristic and rate difference were analyzed. 2 types of spar/skin integrated structural specimens were prepared based on different application condition of surface film. Subsequently, those specimens were evaluated through visual surface inspection, non-destructive and destructive inspection. In a specimen #1 with full application of surface film, low pressurized area of composite laminate created by pressure gradient of structural geometry had voids. It exhibited that voids could not be evacuated and were locked in cured laminate by the influence of pre-cured surface film with relatively faster cure rate. In a specimen #2 without surface film, it revealed that all internal voids disappeared in the cured laminate. Therefore, it is verified that surface film acts as barrier film preventing void movement and evacuation during autoclave cure.

An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM

  • Jiang, Shouyan;Du, Chengbin;Gu, Chongshi
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.597-618
    • /
    • 2014
  • For the structures containing multiple discontinuities (voids, inclusions, and cracks), the simulation technologies in the framework of extended finite element method (XFEM) are discussed in details. The level set method is used for representing the location of inner discontinuous interfaces so that the mesh does not need to align with these discontinuities. Several illustrations have been given to verify that the implemented XFEM program is effective. Then, the implemented XFEM program is used to investigate the effects of the voids, inclusions, and minor cracks on the path of major crack propagation. For a plate containing cracks and voids, two possibly crack path can be observed: i) the crack propagates into the void; ii) the crack initially curves towards the void, then, the crack reorients itself and propagates along its original orientation. For a plate with a soft inclusion, the final predicted crack paths tend to close with the inclusion, and an evident difference of crack paths can be observed with different inclusion material properties. However, for a plate with a hard inclusion, the paths tend to away from the inclusion, and a slightly difference of crack paths can only be seen with different inclusion material properties. For a plate with several minor cracks, the trend of crack paths can still be described as that the crack initially curves towards these minor cracks, and then, the crack reorients itself and propagates almost horizontally along its original orientation.

Estimation of Shape of Voids behind Concrete Tunnel Linings Using Radar of Three Dipole Antenna Type (3 다이폴 안테나 방식 레이더에 의한 콘크리트 터널 라이닝 배면 공동의 형상 추정)

  • Park Seok-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.221-227
    • /
    • 2005
  • The presence of voids behind tunnel linings is very likely to result in settlement or structural collapse. One proposed method of detecting such voids by non-destructive method is radar. More than effectively judging the existence of voids behind tunnel linings, this study aims to develop the analysis algorithm of radar capable of estimation of the shape of specific voids. To acquire directional information and estimate the shape of three-dimensional voids, the radar of three-dipole antenna type is used. As a foundation to this ongoing research, an investigation of microwave polarization methods using three-dipole antenna carried out with various void orientations and void geometries. As a result, it is clarified that the response of four microwave polarization modes depends on void geometry and thus there is a possibility of identifying the geometry and orientation (the shape) of specific voids using radar of three-dipole antenna type.