• Title/Summary/Keyword: structural vibration control

Search Result 786, Processing Time 0.033 seconds

Study on Sound Transmission through a Panel including Structural Vibration (구조 진동을 고려한 평판 구조물 음향 투과 특성 연구)

  • Chang, Woo-Suk;Kim, Won-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.811-816
    • /
    • 2011
  • This study includes investigation on sound transmission phenomena through a structural panel including structural vibration and feedback control methodology to minimize the transmission. Focus is placed on finding the relation between vibration pattern and sound transmission, and on finding optimal sensor and actuator location. A simple analog feedback control circuit is designed and implemented to verify the approach.

  • PDF

Flow-Induced Vibration Characteristics of a Missile Control Surface Considering Shock Wave and Structural Nonlinearity (충격파 및 구조비선형성을 고려한 미사일 조종면의 유체유발 진동특성)

  • Kim, Dong-Hyun;Lee, In;Kim, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.389.2-389
    • /
    • 2002
  • Nonlinear aeroelastic characteristics of a missile control surface are investigated in this study. The wing model has freeplay structural nonlinearity at its pitch axis. Nonlinear aerodynamic flows with unsteady shock waves are also considered in high-speed flow region. To effectively consider a freeplay structural nonlinearity, the fictitious mass method (FMM) is applied to structural vibration analysis based on finite element method (FEM). (omitted)

  • PDF

Integrated vibration control and health monitoring of building structures: a time-domain approach

  • Chen, B.;Xu, Y.L.;Zhao, X.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.811-833
    • /
    • 2010
  • Vibration control and health monitoring of building structures have been actively investigated in recent years but treated separately according to the primary objective pursued. This paper presents a general approach in the time domain for integrating vibration control and health monitoring of a building structure to accommodate various types of control devices and on-line damage detection. The concept of the time-domain approach for integrated vibration control and health monitoring is first introduced. A parameter identification scheme is then developed to identify structural stiffness parameters and update the structural analytical model. Based on the updated analytical model, vibration control of the building using semi-active friction dampers against earthquake excitation is carried out. By assuming that the building suffers certain damage after extreme event or long service and by using the previously identified original structural parameters, a damage detection scheme is finally proposed and used for damage detection. The feasibility of the proposed approach is demonstrated through detailed numerical examples and extensive parameter studies.

A nonlinear structural experiment platform with adjustable plastic hinges: analysis and vibration control

  • Li, Luyu;Song, Gangbing;Ou, Jinping
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.315-329
    • /
    • 2013
  • The construction of an experimental nonlinear structural model with little cost and unlimited repeatability for vibration control study represents a challenging task, especially for material nonlinearity. This paper reports the design, analysis and vibration control of a nonlinear structural experiment platform with adjustable hinges. In our approach, magnetorheological rotary brakes are substituted for the joints of a frame structure to simulate the nonlinear material behaviors of plastic hinges. For vibration control, a separate magnetorheological damper was employed to provide semi-active damping force to the nonlinear structure. A dynamic neural network was designed as a state observer to enable the feedback based semi-active vibration control. Based on the dynamic neural network observer, an adaptive fuzzy sliding mode based output control was developed for the magnetorheological damper to suppress the vibrations of the structure. The performance of the intelligent control algorithm was studied by subjecting the structure to shake table experiments. Experimental results show that the magnetorheological rotary brake can simulate the nonlinearity of the structural model with good repeatability. Moreover, different nonlinear behaviors can be achieved by controlling the input voltage of magnetorheological rotary damper. Different levels of nonlinearity in the vibration response of the structure can be achieved with the above adaptive fuzzy sliding mode control algorithm using a dynamic neural network observer.

Structural Vibration Control using Instantaneous Optimal Control (순간 최적제어에 의한 구조물의 진동제어)

  • 최창근;권대건
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.365-372
    • /
    • 1998
  • Recently, constructions of large and slender structures have been increased owing to the advancement of the structural technologies and that of the new light-weight and high-strength construction materials. Consequently, vibration problems of those slender structures have become a new issue in the area of structural engineering. Active control for those structures is the method that keeps the structures safe from the external loads, especially dynamic loads, by enforcing active forces derived from control devices. In this paper, a procedure for the instantaneous optimal control for structural vibration is presented. Numerical method and experiment are performed for evaluating the effectiveness of active control for reducing vibration of structures.

  • PDF

Active Structural Vibration Control using Forecasting Control Method (예측 제어기법을 이용한 기계 구주물의 능동 진동제어)

  • 황요하
    • Journal of KSNVE
    • /
    • v.2 no.4
    • /
    • pp.293-304
    • /
    • 1992
  • Active vibration control is presented with simulation and experiment. Dynamic Data System(DDS) method is used for system modeling and this model is combined with an forecasting control technique to derive a control equation. In the experiment, on-line digital computer monitors structural vibration and calculates control input. The control input is sent to an electromagnetic actuator which cancels the structural vibration. Experiment is performed first with a simple beam setup to demonstrate the effetiveness of this method. This method is then applied to a color laser printer to actively modify the structure. The beam experiment showed vibration reduction of over 60% with one-and two-DOF models. In the printer structure experiment, the first mode of 308 Hz was successfully controlled with a one-DOF model.

  • PDF

Structural Vibration Control for Broadband Noise Attenuation in Enclosures

  • Krishnaswamy Kailash;Rajamani Rajesh;Woo Jong Jin;Cho Young Man
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1414-1423
    • /
    • 2005
  • This paper develops and evaluates several strategies for structural vibration control with the objective of attenuating broadband noise inside a rectangular enclosure. The strategies evaluated include model-independent collocated control, model-based feedback control and a new 'modal-estimate' feedback strategy. Collocated control requires no knowledge of model parameters and enjoys the advantage of robustness. However, effective broadband noise attenuation with colocated control requires a large number of sensor-actuator pairs. Model-based con-trollers, on the other hand, can be theoretically effective even with the use of a single actuator. However, they suffer from a lack of robustness and are unsuitable from a practical point of view for broadband structural vibration applications where the dynamic models are of large order and poorly known. A new control strategy is developed based on attenuating a few structural vibration modes that have the best coupling with the enclosure acoustics. Broadband attenuation of these important modes can be achieved using a single actuator, a limited number of accelerometers and limited knowledge of a few modal functions. Simulation results are presented to demonstrate the effectiveness of the developed strategy.

Control Method of Wind Induced Vibration Level for High-rise buildings (초고층 건물의 풍가속도응답 조절 기법)

  • Kim Ji-Eun;Seo Ji-Hyun;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.375-382
    • /
    • 2005
  • In this paper, a practical control method of wind-induced vibration of high-rise buildings is presented in the form of resizing algorithm. In the structural design process for high-rise buildings, the lateral load resisting system for the building is more often determined by serviceability design criteria including wind-induced vibration level. Even though many drift method have been developed in various forms, no practical design method for wind induced vibration has been developed so far. Structural engineers rely upon heuristic or experience in designing wind induced vibration. The performance of the proposed method is evaluated by comparing wind-induced vibration levels estimated both from approximate techniques and wind tunnel test.

  • PDF

Sensitivity Analysis of Anti-resonance Frequency for Vibration Test Control of a Fixture

  • Jeong, Weui-Bong;Yoo, Wan-Suk;Kim, Jun-Yeop
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1732-1738
    • /
    • 2003
  • The test specimen in environmental vibration test is connected to the fixture through several attachment points. The forces generated by the shaker must be transmitted equally to all attachment points. The forces transmitted to attachment points, however, are different because of the flexural vibration of the fixture. The variations of the transmitted force cause the under-test, especially at anti-resonance frequencies, in vibration test control. Anti-resonance frequencies at the attachment points of the fixture must be same in order to avoid the under-test in vibration test control. The structural modification of the fixture is needed so that anti-resonance frequencies at attachment points have the same value. In this paper, the method to calculate the anti-resonance frequencies and those sensitivities is presented. This sensitivity analysis is applied to the structural modification of the fixture excited at multi-points by the shaker. The antiresonance frequencies at the attachment points of the fixture can have the same value after structural modification, and the under-test in the vibration test control can be removed. Several computer simulations show that the proposed method can remove the under-tests, which are not removed in conventional vibration test control.

Optimum study on wind-induced vibration control of high-rise buildings with viscous dampers

  • Zhou, Yun;Wang, DaYang;Deng, XueSong
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.497-512
    • /
    • 2008
  • In this paper, optimum methods of wind-induced vibration control of high-rise buildings are mainly studied. Two optimum methods, genetic algorithms (GA) method and Rayleigh damping method, are firstly employed and proposed to perform optimum study on wind-induced vibration control, six target functions are presented in GA method based on spectrum analysis. Structural optimum analysis programs are developed based on Matlab software to calculate wind-induced structural responses. A high-rise steel building with 20-storey is adopted and 22 kinds of control plans are employed to perform comparison analysis to validate the feasibility and validity of the optimum methods considered. The results show that the distributions of damping coefficients along structural height for mass proportional damping (MPD) systems and stiffness proportional damping (SPD) systems are entirely opposite. Damping systems of MPD and GAMPD (genetic algorithms and mass proportional damping) have the best performance of reducing structural wind-induced vibration response and are superior to other damping systems. Standard deviations of structural responses are influenced greatly by different target functions and the influence is increasing slightly when higher modes are considered, as shown fully in section 5. Therefore, the influence of higher modes should be considered when strict requirement of wind-induced vibration comfort is needed for some special structures.