• Title/Summary/Keyword: structural testing

Search Result 1,568, Processing Time 0.037 seconds

MODIFIED POSTERIOR TIME-STEP ADJUSTMENT TECHNIQUE FOR MDOF SYSTEM IN SUBSTRUCTURING PSEUDODYNAMIC TEST (부분구조 유사동적법에 있어 다자유도 시스템에 대한 수정 시간증분 조정기법)

  • 이원호;강정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.473-480
    • /
    • 1998
  • The substructuring pseudodynamic test is a hybrid testing method consisting of a numerical simulation of the earthquake response of an analytical model and a loading test of a specimen. The substructuring pseudodynamic testing technique has been applied to various seismic experiments since it has advantages over the shaking table test to study dynamic behaviors of relatively large scale structures. However, experimental errors are inevitable in substructuring pseudodynamic testing. Some of these errors can be monitored during the test, but, due to limitations in control system, they cannot be eliminated. For example, one cannot control exactly the displacements that are actually imposed on the structures at each time step. This paper focuses on a technique to minimize the cumulative effect of such control errors for MDOF system. For this purpose, the modified posterior adjustment of the time increment from a target value $\Delta$t$_{n}$ to an adjusted value is performed to minimize the effect of the control errors for MDOF system.for MDOF system.

  • PDF

Vulnerability of roofing components to wind loads

  • Jayasinghe, N.C.;Ginger, J.D.
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.321-335
    • /
    • 2011
  • The vulnerability of roofing components of contemporary houses built in cyclonic regions of Australia is assessed for increasing wind speeds. The wind loads and the component strengths are treated as random variables with their probability distributions derived from available data, testing, structural analysis and experience. Design details including types of structural components of houses are obtained from surveying houses and analyzing engineering drawings. Wind load statistics on different areas of the roof are obtained by wind tunnel model studies and compared with Australian/New Zealand Standard, AS/NZS 1170.2. Reliability methods are used for calculating the vulnerability of roofing components independently over the roof. Cladding and batten fixings near the windward gable edge are found to experience larger negative pressures than prescribed in AS/NZS 1170.2, and are most vulnerable to failure.

A framework for distributed analytical and hybrid simulations

  • Kwon, Oh-Sung;Elnashai, Amr S.;Spencer, Billie F.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.331-350
    • /
    • 2008
  • A framework for multi-platform analytical and multi-component hybrid (testing-analysis) simulations is described in this paper and illustrated with several application examples. The framework allows the integration of various analytical platforms and geographically distributed experimental facilities into a comprehensive pseudo-dynamic hybrid simulation. The object-oriented architecture of the framework enables easy inclusion of new analysis platforms or experimental models, and the addition of a multitude of auxiliary components, such as data acquisition and camera control. Four application examples are given, namely; (i) multi-platform analysis of a bridge with soil and structural models, (ii) multiplatform, multi-resolution analysis of a high-rise building, (iii) three-site small scale frame hybrid simulation, and (iv) three-site large scale bridge hybrid simulation. These simulations serve as illustrative examples of collaborative research among geographically distributed researchers employing different analysis platforms and testing equipment. The versatility of the framework, ease of including additional modules and the wide application potential demonstrated in the paper provide a rich research environment for structural and geotechnical engineering.

Distributed Hybrid Simulation and Testing System using General-Purpose Finite Element Analysis Program (범용 유한요소해석 프로그램을 이용한 분산 공유 하이브리드 해석 및 실험 시스템)

  • Yun, Gun-Jin;Han, Bong-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.59-71
    • /
    • 2008
  • In this paper, a software framework that integrates computational and experimental simulation has been developed to simulate and test a large-scale structural system under earthquake loading. The proposed software framework does not need development of the computer codes for both dynamic and static simulations. Any general-purpose software can be utilized with a main control module and interface APIs. This opens up a new opportunity to facilitate use of sophisticated finite elements into hybrid simulation regime to enhance accuracy and efficiency of simulations. The software framework described in the paper is modular and uses object oriented programming concepts. A series of illustrative examples demonstrate that the system is fully-functional and is capable of running any number of experimental and/or analytical components.

Shear modulus and stiffness of brickwork masonry: An experimental perspective

  • Bosiljkov, Vlatko Z.;Totoev, Yuri Z.;Nichols, John M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.21-43
    • /
    • 2005
  • Masonry is a composite non-homogeneous structural material, whose mechanical properties depend on the properties of and the interaction between the composite components - brick and mortar, their volume ratio, the properties of their bond, and any cracking in the masonry. The mechanical properties of masonry depend on the orientation of the bed joints and the stress state of the joints, and so the values of the shear modulus, as well as the stiffness of masonry structural elements can depend on various factors. An extensive testing programme in several countries addresses the problem of measurement of the stiffness properties of masonry. These testing programs have provided sufficient data to permit a review of the influence of different testing techniques (mono and bi-axial tests), the variations caused by distinct loading conditions (monotonic and cyclic), the impact of the mortar type, as well as influence of the reinforcement. This review considers the impact of the measurement devices used for determining the shear modulus and stiffness of walls on the results. The results clearly indicate a need to re-assess the values stated in almost all national codes for the shear modulus of the masonry, especially for masonry made with lime mortar, where strong anisotropic behaviour is in the stiffness properties.

A Structural Damage Identification Method Based on Spectral Element Model and Frequency Response Function

  • Lee, U-Sik;Min, Seung-Gyu;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.559-565
    • /
    • 2003
  • A spectral element model-based structural damage identification method (SDIM) was derived in the previous study by using the damage-induced changes in frequency response functions. However the previous SDIM often provides poor damage identification results because the nonlinear effect of damage magnitude was not taken into account. Thus, this paper improves the previous SDIM by taking into account the nonlinear effect of damage magnitude. Accordingly an iterative solution method is used in this study to solve the nonlinear matrix equation for local damages distribution. The present SDIM is evaluated through the numerically simulated damage identification tests.

Structural Damage Monitoring of Harbor Caissons with Interlocking Condition

  • Huynh, Thanh-Canh;Lee, So-Young;Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.678-685
    • /
    • 2012
  • The objective of this study is to monitor the health status of harbor caissons which have potential foundation damage. To obtain the objective, the following approaches are performed. Firstly, a structural damage monitoring(SDM) method is designed for interlocked multiple-caisson structures. The SDM method utilizes the change in modal strain energy to monitor the foundation damage in a target caisson unit. Secondly, a finite element model of a caisson system which consists of three caisson units is established to verify the feasibility of the proposed method. In the finite element simulation, the caisson units are constrained each other by shear-key connections. The health status of the caisson system against various levels of foundation damage is monitored by measuring relative modal displacements between the adjacent caissons.

Full Vehicle Modal Testing using Single-Run FRF Measurement and Mode Map Validation (Single-Run FRF 측정을 통한 실차 모달 시험 및 모드맵 검증)

  • Lee, Keun-Soo;Jung, Seung-Kyun;Kim, Jeung-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.387-388
    • /
    • 2008
  • Finding reasonable flexural modes from the full vehicle modal testing has always been a difficult job to N&V engineers due to FRF inconsistency, nonlinearity, heavy damping and, in many cases, interactions between global body structural modes and massive isolate/non-isolated subsystem modes. This paper provides a brier overview of the mode map validation using single-run FRF measurement with highly sensitive accelerometers fur the full vehicle modal analysis and then it can be used to characterize the vehicle's global/local vibration performances, especially customer perceived "structural feel" typically below 40Hz.

  • PDF

Dynamic testing and health monitoring of historic and modern civil structures in Italy

  • Gattulli, Vincenzo;Lepidi, Marco;Potenza, Francesco
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.71-90
    • /
    • 2016
  • The paper reports a wide overview of the scientific activities on Structural Health Monitoring (SHM) in Italy. They are classified on three different conceptual scales: national territory (macro); regional area (medium); single structure (small). In the latter case differences have been pointed out between permanent installation and short-term experimental campaigns. A particular focus has been dedicated to applications devoted to cultural heritage which have an important historic, strategic and economic value for Italy. Two specific cases, the first related to the permanent monitoring of an historical Basilica and the second regarding the dynamic testing of a modern structure, have been presented as a basis for a general discussion.

Vibration-based Identification of Directional Damages in a Cylindrical Shell

  • Kim, Sung-Hwan;Oh, Hyuk-Jin;Lee, U-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.178-188
    • /
    • 2005
  • This paper introduces a structural damage identification method to identify 4he multiple directional damages generated within a cylindrical shell by using the measured frequency response function (FRF). The equations of motion for a damaged cylindrical shell are derived. by using a theory of continuum damage mechanics in which a small material volume containing a directional damage is represented by the effective orthotropic elastic stiffness. In contrast with most existing vibration-based structural damage identification methods which require the modal Parameters measured in both intact and damaged states, the present method requires only the FRF-data measured at damaged state. Numerically simulated damage identification tests are conducted to verify the feasibility of the Proposed structural damage identification method.