• Title/Summary/Keyword: structural silica

Search Result 255, Processing Time 0.184 seconds

Evaluating Shrinkage Characteristic of Ternary Grout for PSC Bridge Using Expansive Additive and Shrinkage Reducing Agent (팽창재 및 수축저감제를 이용한 PSC 교량용 3성분계 그라우트의 수축특성 평가)

  • Yuan, Tian-Feng;An, Gi-Hong;Ryu, Gum-Sung;Koh, Kyoung-Taek;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.519-525
    • /
    • 2016
  • This paper reports on analyzing the free and restrained shrinkage characteristic of ternary grout used cementitious admixture. In this study, the cementitious admixture was used such as fly ash, ziricania silica fume by combination of expansive additive (a, b) and shrinkage reducing agent. And a number of basic performance tests were conducted to investigate bleeding, volume change, fluidity and compressive strength behavior. According to the results, within appropriate mixing ratio, even the fluidity is not influenced by expansive additive and shrinkage reducing agent, the resistant properties of bleeding, volume change, shrinkage and compressive strength are increased. Comparing with plain grout, the free shrinkage reduced by a minimum of 29% which specimens are added expansive additive and shrinkage reducing agent. The combination of expansive additive a and shrinkage reducing agent is the most effective for reduction of shrinkage. And increasing the mixing ratio of expansive additive and shrinkage reducing agent extended cracking time. Nevertheless, combined addition of expansive additive a 2.0% and shrinkage reducing agent 0.50% has best shrinkage reduction behavior and not appeared cracking. From the above, the mixing ratio of 2.0% of expansive additive a and 0.50% of shrinkage reducing agent is high performance ternary grout for PSC bridge.

Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing (3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • 3D printing is not only at the fundamental study and small-scale level, but has recently been producing buildings that can be inhabited by people. Buildings require a lot of cost and labor to work on the form work, but if 3D printing is applied to the building, the construction industry is received attention from technologies using 3D printing as it can reduce the construction period and cost. 3D printing technology for buildings can be divided into structural and non-structural materials, of which 3D printing is applied to non-structural materials. Because 3D printing needs to be additive manufacturing, control such as curing speed and workability is needed. Since cement mortar has a large shrinkage due to evaporation of water, cement polymer dispersion is used to improve the hardening speed, workability, and adhesion strength. The addition of polymer dispersion to cement mortar improves the tensile strength and brittleness between the cement hydrate and the polymer film. Cement mortar using polymer materials can be additive manufacturing but it has limited height that can be additive manufacturing due to its high density. When light-weight materials are mixed with polymer cement mortar, the density of polymer cement mortar is lowered and the height of additive manufacturing, so it is essential to use light-weight materials. However, the use of EVA redispersible polymer powder and light-weight materials, additional damage such as cracks in cement mortar can occur at high temperatures such as fires. This study produced a test specimen incorporating light-weight materials and EVA redispersible polymer powder to produce exterior building materials using 3D printing, and examined flame resistance performance through water absorption rate, length change rate, and cone calorimeter test and non-flammable test. From the test result, the test specimen using silica sand and light-weight aggregate showed good flame resistance performance, and if the EVA redispersible polymer powder is applied below 5%, it shows good flame resistance performance.

Isolation and Structural Determination of Squalene Synthase Inhibitor from Prunus mume Fruit

  • Choi, Sung-Won;Hur, Nam-Yoon;Ahn, Soon-Cheol;Kim, Dong-Seob;Lee, Jae-Kwon;Kim, Dae-Ok;Park, Seung-Kook;Kim, Byun-Yong;Baik, Moo-Yeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1970-1975
    • /
    • 2007
  • Squalene synthase plays an important role in the cholesterol biosynthetic pathway. Inhibiting this enzyme in hypercholesterolemia can lower not only plasma cholesterol but also plasma triglyceride levels. A squalene synthase inhibitor was screened from Prunus mume fruit, and then purified via sequential processes of ethanol extraction, HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, and crystallization. The squalene synthase inhibitor was identified as chlorogenic acid with a molecular mass of 354 Da and a molecular formula of $C_{16}H_{18}O_9$ based on UV spectrophotometry, $^1H$ and $^{13}C$ NMRs, and mass spectrometry. Chlorogenic acid inhibited the squalene synthase of pig liver with an $IC_{50}$ level of 100 nM. Since chlorogenic acid was an effective inhibitor against the squalene synthase of an animal source, it may be a potential therapeutic agent for hypercholesterolemia.

Identification of Water Soluble Metabolites of Pentachlorophenol(PCP) in the Suspension Cultures of Soybean and Rice Cells;2. Isolation and characterization of PCP glucose conjugates (콩과 벼 현탁배양시(懸濁培養時) PCP 수용성대사물(水溶性代謝物)의 동정(同定);2. PCP glucose conjugates의 분리(分離) 및 분석(分析))

  • Kim, Pil-Je;Park, Chang-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.37-45
    • /
    • 1996
  • Abstracts From the previous metabolic study of Pentachlorophenol(PCP), PCP was found to be exclusively transformed into ${\beta}-glucose$ conjugates of PCP in soybean and rice cell suspension cultures. In order to gather structural information of of the glucose conjugate, their aglycons and glycon have been analyzed by GC and GC/MS respectively, after thorough purification by chromatographic techniques. The glucose conjugates were effectively purified through a 1-butanol extraction followed by Silica gel TLC, Sephadex column chromatography and HPLC. Aglycons of the metabolites were identified as PCP, isomeric mixture of tetrachlorophenol, and tetrachlorocatechol and glycon were identified as glucose, suggesting that there are at least three kinds of glucose conjugates with different phenolic moieties. Under controlled conditions, the glucose conjugates were separated into three HPLC peaks which released respective aglycon upon a hydrolytic treatment. These results give valuable information on the structure of the glucose conjugates such that some PCP-driven chlorophenols, in addition to PCP, are also conjugated with glucose.

  • PDF

One-step synthesis of dual-transition metal substitution on ionic liquid based N-doped mesoporous carbon for oxygen reduction reaction

  • Byambasuren, Ulziidelger;Jeon, Yukwon;Altansukh, Dorjgotov;Ji, Yunseong;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.53-64
    • /
    • 2016
  • Nitrogen (N)-doped ordered mesoporous carbons (OMCs) with a dual transition metal system were synthesized as non-Pt catalysts for the ORR. The highly nitrogen doped OMCs were prepared by the precursor of ionic liquid (3-methyl-1-butylpyridine dicyanamide) for N/C species and a mesoporous silica template for the physical structure. Mostly, N-doped carbons are promoted by a single transition metal to improve catalytic activity for ORR in PEMFCs. In this study, our N-doped mesoporous carbons were promoted by the dual transition metals of iron and cobalt (Fe, Co), which were incorporated into the N-doped carbons lattice by subsequently heat treatments. All the prepared carbons were characterized by via transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). To evaluate the activities of synthesized doped carbons, linear sweep was recorded in an acidic solution to compare the ORR catalytic activities values for the use in the PEMFC system. The dual transition metal promotion improved the ORR activity compared with the single transition metal promotion, due to the increase in the quaternary nitrogen species from the structural change by the dual metals. The effect of different ratio of the dual metals into the N doped carbon were examined to evaluate the activities of the oxygen reduction reaction.

Isolation and characterization of an antifungal substance from Burkholderia cepacia, an endophytic bacteria obtained from roots of cucumber.

  • Park, J.H.;Park, G.J.;Lee, S.W;Jang, K.S.;Park, Y.H.;Chung, Y.R.;Cho, K.Y.;Kim, J.C.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.95.2-96
    • /
    • 2003
  • In order to develop a new microbial fungicide for the control of vegetable diseases using endophytic bacteria, a total of 260 bacterial strains were isolated from fresh tissues of 5 plant species. After they were cultured in broth media, their antifungal activities were screened by in vivo bioassays against Botrytis cinerea(tomato gray mold), Pythium ultimum(cucumber damping-off), Phytopkhora infestans(tomato late blight), Colletotrichum orbiculare(cucumber anthracnose), and Blumeria graminis f. sp. hordei(barley powdery mildew). As the results of screening, 38 bacterial strains showed potent antifungal activities against at least one of 5 plant pathogens. A bacterial strain EB072 displayed potent disease control activities against 3 plant diseases. Among the bacterial strains with a potent antifungal activity against cucunlber anthracnose, three bacterial strains, EB054, EB151 and EB215, also displayed a potent in vitro antifungal activity against C. acutatum, a fungal agent causing pepper anthracnose. A bacterial strain EB215 obtained from roots of cucumber was identified as Burkholderia cepacia based on its physiological and biochemical characteristics and 165 rRNA gene sequence. An antifungal substance was isolated from the liquid cultures of B. cepacia EB215 strain by ethyl acetate partitioning, repeated silica gel column chromatography, and invitro bioassay, Its structural determination is in progress by various instrumental analyses.

  • PDF

Allium Jesdianum Extract Improve AcetaminophenInduced Hepatic Failure through Inhibition of Oxidative/Nitrosative Stress

  • Sohrabinezhad, Zohreh;Dastan, Dara;Asl, Sara Soleimani;Nili-Ahmadabadi, Amir
    • Journal of Pharmacopuncture
    • /
    • v.22 no.4
    • /
    • pp.239-247
    • /
    • 2019
  • Objectives: Allium jesdianum (Aj) is a medicinal plant that has highlighted pharmacological features. In this study, the effects of Aj extract were examined on acetaminophen (APAP)-induced hepatic failure in rats. Methods: Methanolic fraction of hydro-alcoholic extract of Aj was obtained by silica gel column chromatography method. Animals were randomly divided into four groups each containing six rats and treated by gavage as follows: the first and second groups received normal saline, the third and fourth groups were received with 50 and 100 mg/kg of Aj extract, respectively. After two consecutive weeks, the groups 2-4 were given a single dose of APAP (2 g/kg). After 48 hours, blood and liver samples were collected for biochemical and histological examinations. Results: The findings of the study demonstrated that APAP caused a significant increase in ALT (P < 0.001), AST (P < 0.001), LDH (P < 0.001), ALP (P < 0.001) serum levels, hepatic lipid peroxidation (LPO; P < 0.001) and nitric oxide (NO; P < 0.001). In this regard, APAP led to the depletion of the total antioxidant capacity (TAC; P < 0.001), glutathione and total thiol groups (TTGs; P < 0.001), and structural change in the liver. In the Aj extract groups, a considerable improvement was found in the hepatic function alongside the histopathologic changes. Conclusion: This investigation indicated that the influential effects of Aj extract in APAP-induced hepatic failure might depend on its effect on improving oxidant/antioxidant balance in hepatic tissue.

Purification and Structural Analysis of Surfactin Produced by Endophytic Bacillus subtilis EBS05 and its Antagonistic Activity Against Rhizoctonia cerealis

  • Wen, Cai-Yi;Yin, Zhi-Gang;Wang, Kai-Xuan;Chen, Jian-Guang;Shen, Shun-Shan
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.342-348
    • /
    • 2011
  • Bacillus subtilis EBS05, an endophytic bacteria strain isolated from a medicinal plant Cinnamomum camphor, can produce antagonistic compounds that effectively inhibit plant pathogenic fungi. The greenhouse experiments showed that wheat sharp eyespot disease (WSED) was reduced by 91.2%, 88.2% and 43.0% after the treatment with fermentation broth, bacteria-free filter and a fungicide fludioxonil, respectively. The culture broth of strain EBS05 can more effectively control WSED than can fludioxonil. The fermentation broth and bacteria-free filter ability to suppress WSED was not significantly different, suggesting that an active secreted substance played a major role in controlling WSED. Separation and purification of the active compounds was carried out by serial processes, including hydrochloric acid (pH 2.0) treatment, methanol extraction and Sephadex LH-20 column chromatography, silica gel column chromatography and reverse-phase high-pressure liquid chromatography (HPLC), respectively. The purified compounds, one of active peaks in the HPLC spectrum, were obtained from the collection. Analysis of the chemical structures by time-of-flight mass spectrometry (TOF-MS) and electrospray ionization mass spectrometry/mass spectrometry (ESI-MS/MS) showed that the active substances produced by the endophytic bacteria EBS05 are mixture of the ${\beta}$-hydroxy-C12~C15-$Leu^7$ surfactin A isomers with 1035.65 Da, 1021.64 Da, 1007.63 Da and 993.65 Da molecular weights, respectively.

Anti-proliferative and Antioxidant Activities of 1-methoxy-3-methyl-8-hydroxy-anthraquinone, a Hydroxyanthraquinoid Extrolite Produced by Amycolatopsis thermoflava strain SFMA-103

  • Kumar, C. Ganesh;Mongolla, Poornima;Chandrasekhar, Cheemalamarri;Poornachandra, Yedla;Siva, Bandi;Babu, K. Suresh;Ramakrishna, Kallaganti Venkata Siva
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.200-208
    • /
    • 2017
  • Actinobacteria are prolific producers of a large number of natural products with diverse biological activities. In the present study, an actinobacterium isolated from sunflower rhizosphere soil sample collected from Medak, Andhra Pradesh, South India was identified as Amycolatopsis thermoflava strain SFMA-103. A pigmented secondary metabolite in culture broth was extracted by using methanol and it was further purified by silica gel column chromatography with methanol-chloroform solvent system. Structural elucidation studies based on UV-visible, 1D and 2D-NMR, FT-IR, and mass spectroscopic analyses confirmed the structure as 1-methoxy-3-methyl-8-hydroxy-anthraquinone. It showed significant in vitro anticancer activity against lung cancer and lymphoblastic leukemia cells with $IC_{50}$ values of 10.3 and $16.98{\mu}M$, respectively. In addition, 1-methoxy-3-methyl-8-hydroxy-anthraquinone showed good free radical scavenging activity by DPPH method with an $EC_{50}$ of $18.2{\mu}g/ml$. It also showed other promising superoxide radical scavenging, nitric oxide radical scavenging and inhibition of lipid peroxidation activities. This is a first report of anti-proliferative and antioxidant activities of 1-methoxy-3-methyl-8-hydroxy-anthraquinone isolated from A. thermoflava strain SFMA-103 which may find potential application in biotechnological and pharmaceutical fields.

Applications of Artificial Neural Networks for Using High Performance Concrete (고성능 콘크리트의 활용을 위한 신경망의 적용)

  • Yang, Seung-Il;Yoon, Young-Soo;Lee, Seung-Hoon;Kim, Gyu-Dong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.4 s.11
    • /
    • pp.119-129
    • /
    • 2003
  • Concrete and steel are essential structural materials in the construction. But, concrete, different from steel, consists of many materials and is affected by many factors such as properties of materials, site environmental situations, and skill of constructors. Concrete have two kinds of properties, immediately knowing properties such as slump, air contents and time dependent one like strength. Therefore, concrete mixes depend on experiences of experts. However, at point of time using High Performance Concrete, new method is wanted because of more ingredients like mineral and chemical admixtures and lack of data. Artificial Neural Networks(ANN) are a mimic models of human brain to solve a complex nonlinear problem. They are powerful pattern recognizers and classifiers, also their computing abilities have been proven in the fields of prediction, estimation and pattern recognition. Here, among them, the back propagation network and radial basis function network ate used. Compositions of high-performance concrete mixes are eight components(water, cement, fine aggregate, coarse aggregate, fly ash, silica fume, superplasticizer and air-entrainer). Compressive strength, slump, and air contents are measured. The results show that neural networks are proper tools to minimize the uncertainties of the design of concrete mixtures.