Browse > Article
http://dx.doi.org/10.5714/CL.2016.17.1.053

One-step synthesis of dual-transition metal substitution on ionic liquid based N-doped mesoporous carbon for oxygen reduction reaction  

Byambasuren, Ulziidelger (Department of Chemical and Biomolecular Engineering, Yonsei University)
Jeon, Yukwon (Department of Chemical and Biomolecular Engineering, Yonsei University)
Altansukh, Dorjgotov (Department of Chemical and Biomolecular Engineering, Yonsei University)
Ji, Yunseong (Department of Chemical and Biomolecular Engineering, Yonsei University)
Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Carbon letters / v.17, no.1, 2016 , pp. 53-64 More about this Journal
Abstract
Nitrogen (N)-doped ordered mesoporous carbons (OMCs) with a dual transition metal system were synthesized as non-Pt catalysts for the ORR. The highly nitrogen doped OMCs were prepared by the precursor of ionic liquid (3-methyl-1-butylpyridine dicyanamide) for N/C species and a mesoporous silica template for the physical structure. Mostly, N-doped carbons are promoted by a single transition metal to improve catalytic activity for ORR in PEMFCs. In this study, our N-doped mesoporous carbons were promoted by the dual transition metals of iron and cobalt (Fe, Co), which were incorporated into the N-doped carbons lattice by subsequently heat treatments. All the prepared carbons were characterized by via transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). To evaluate the activities of synthesized doped carbons, linear sweep was recorded in an acidic solution to compare the ORR catalytic activities values for the use in the PEMFC system. The dual transition metal promotion improved the ORR activity compared with the single transition metal promotion, due to the increase in the quaternary nitrogen species from the structural change by the dual metals. The effect of different ratio of the dual metals into the N doped carbon were examined to evaluate the activities of the oxygen reduction reaction.
Keywords
N-doped carbons; ordered mesoporous carbons (OMCs); Ionic liquid (IL); transition metal; Oxygen reduction reaction (ORR);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nallathambi V, Lee JW, Kumaraguru SP, Wu G, Popov BN. Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM Proton Exchange Membrane fuel cells. J Power Sources, 183, 34-42, (2008). doi:10.1016/j.jpowsour.2008.05.020.   DOI
2 Feng Y, Vante NA. Nonprecious metal catalysts for the molecular oxygen-reduction reaction. Phys Status Solidi B, 245, 1792-1806 (2008). doi: 10.1002/pssb.200879537.   DOI
3 Chen Z, Higgins D, Yu A, Zhang L, Zhang J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci, 4, 3167-3192 (2011). doi: 10.1039/C0EE00558D.   DOI
4 Liu G, Li X, Ganesa P, Popov BN. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl Catal B, 93, 156-165 (2009). doi:10.1016/j.apcatb.2009.09.025.   DOI
5 Yang DS, Bhattacharjya D, Inamar S, Park JS, Yu JS. Phosphorus-Doped Ordered Mesoporous Carbons with Different Lengths as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. J Am Chem Soc, 134, 16127-16130 (2012). doi: 10.1021/ja306376s.   DOI
6 Liu ZW, Peng F, Wang HJ, Yu H, Zheng WX, Yang J. Phosphorus-Doped Graphite Layers with High Electrocatalytic Activity for the O2 Reduction in an Alkaline Medium. Angew Chem Int Ed, 50, 3257-3261 (2011). doi:10.1002/anie.201006768.   DOI
7 Zhao X, Zhang Q, Zhang B, Chen CM, Wang A, Zhang T, Su DS. Dual-heteroatom-modified ordered mesoporous carbon: Hydrothermal functionalization, structure, and its electrochemical performance. J Mater Chem, 22, 4963-4969 (2012). doi: 10.1039/C2JM15820E.   DOI
8 Li R, Wei Z, Gou X, Xu W. Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts. RSC Adv, 3, 9978-9984 (2013). doi:10.1039/C3RA41079J.   DOI
9 Thomas A, Coettmann F, Antonietti M. Hard Templates for Soft Materials: Creating Nanostructured Organic Materials. Chem Mater, 20, 738-755 (2008). doi: 10.1021/cm702126j.   DOI
10 Xia Y, Mokaya R. Synthesis of Ordered Mesoporous Carbon and Nitrogen-Doped Carbon Materials with Graphitic Pore Walls via a Simple Chemical Vapor Deposition Method. Adv Mater, 16, 1553-1558 (2004). doi:10.1002/adma.200400391.   DOI
11 Xia Y, Moyaka R. Generalized and Facile Synthesis Approach to N-Doped Highly Graphitic Mesoporous Carbon Materials. Chem Mater, 17, 1553-1560 (2005). doi: 10.1021/cm048057y.   DOI
12 Katie LH, Hansung K. Nitrogen-doped carbon catalysts derived from ionic liquids in the presence of transition metals for the oxygen reduction reaction. Appl Catal B, 158-159, 355-360 (2014). doi:10.1016/j.apcatb.2014.04.038.   DOI
13 Li Z, Li G, Jiang L, Li J, Sun G, Xia C, Li F. Ionic liquids as precursors for efficient mesoporous iron-nitrogen-doped oxygen reduction electrocatalysts. Angew Chem Int Ed, 54,1494-14986 (2015). doi: 10.1002/ange.201409579.   DOI
14 Paranowitsch JP, Zhang J, Su D, Thomas A, Antonietti M. Ionic Liquids as Precursors for Nitrogen-Doped Graphitic Carbon. Adv Mater, 22, 87-92 (2010). doi:10.1002/adma.200900965.   DOI
15 Yang W, Fellinger TP, Antonietti M. Efficient Metal-Free Oxygen Reduction in Alkaline Medium on High-Surface-Area Mesoporous Nitrogen-Doped Carbons Made from Ionic Liquids and Nucleobases. J Am Chem Soc, 133, 206-209 (2011). doi:10.1021/ja108039j.   DOI
16 Elumeeva K, Fechler N, Fellinger TP, Antonietti M. Metal-free ionic liquid-derived electrocatalyst for high-performance oxygen reduction in acidic and alkaline electrolytes. Mater Horiz, 82, 585-594 (2014). doi: 10.1039/C4MH00123K.   DOI
17 Zhang Z, Veith GM, Brown GM, Fulvio PF, Hillesheim PC, Dai S, Overbury SH. Ionic liquid derived carbons as highly efficient oxygen reduction catalysts: first elucidation of pore size distribution dependent kinetics. Chem Commun, 50, 1469-1471 (2014). doi: 10.1039/C3CC48942F.   DOI
18 Choi JY, Hsu R, Chen Z. Nanoporous Carbon-Supported Fe/Co-N Electrocatalyst for Oxygen Reduction Reaction in PEM Fuel Cells. ECS Trans, 28(23), 101-112 (2010). doi: 10.1149/1.3502342.   DOI
19 Wu G, Chen Z, Artyushkova K, Garzon FH, Zelenay P. Polyaniline-derived Non Precious Catalyst for the Polymer Electrolyte Fuel Cell Cathode. ECS Trans, 16(2), 159- 170 (2008). doi:10.1149/1.2981852.   DOI
20 Chean JY, Kim T, Choi YM, Jeong HY, Kim MG, Young JS, Kim J, Lee Z, Yang TH, Kwon K, Terasaki O, Park GG, Adzic RR, Joo SH. Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction. Sci Rep, 3, 2715 (2013). doi:10.1038/srep02715.   DOI
21 Liu G, Li X, Canesan P, Popov BN. Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochim Acta, 55, 2853-2858 (2010). doi:10.1016/j.electacta.2009.12.055.   DOI
22 Chen R, Li H, Chu D, Wang G. Unraveling Oxygen Reduction Reaction Mechanisms on Carbon-Supported Fe-Phthalocyanine and Co-Phthalocyanine Catalysts in Alkaline Solutions. J Phys Chem C, 113, 20689-20697 (2009). doi: 10.1021/jp906408y.   DOI
23 Zhang HJ, Yuan X, Sun L, Yang J, Ma ZF. Synthesis and characterization of non-precious metal binary catalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Electrochim Acta, 77, 324-329 (2012). doi:10.1016/j.electacta.2012.06.011.   DOI
24 Choi CH, Park SH, Woo SI. N-doped carbon prepared by pyrolysis of dicyandiamide with various MeCl2·xH2O (Me = Co, Fe, and Ni) composites: Effect of type and amount of metal seed on oxygen reduction reactions. Appl Catal B, 119-120, 123-131 (2012). doi:10.1016/j.apcatb.2012.02.031.   DOI
25 Gasteiger HA, Markovic NM. Just a Dream—or Future Reality? Science, 324, 48-49 (2009). doi:10.1126/science.1172083.   DOI
26 Wu G, More Kl, Johnston CM, Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science, 332, 443-447 (2011). doi:10.1126/science.1200832.   DOI
27 Dorjgotov A, Ok JH, Jeon YW, Yoon SH, Shul YG. Nitrogen-doped ordered porous carbon catalyst for oxygen reduction reaction in proton exchange membrane fuel cells. J Solid State Electrochem, 17, 2567-2577 (2013). doi: 10.1007/s10008-013-2135-y.   DOI
28 Can M, Akca B, Yilmaz A, Uner D. Synthesis and Characterization of Co-Pb/SBA-15 Mesoporous Catalysts. Turk J Phys, 29, 287-29 (2005).
29 Liang EJ, Ding P, Zhang HR, Guo XY, Du ZL. Synthesis and correlation study on the morphology and Raman spectra of CNx nanotubes by thermal decomposition of ferrocene/ethylenediamine. Diam Relat Mater, 13, 69-76 (2004). doi:10.1016/j.diamond.2003.08.025.   DOI
30 ShaoY, Zhang S, Engelhand MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y. Nitrogen-doped graphene and its electrochemical applications. J Mater Chem, 20, 7491-7496 (2010). doi: 10.1039/C0JM00782J.   DOI
31 Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki JI. Carbon Alloy Catalysts: Active Sites for Oxygen Reduction Reaction. J Phys Chem C, 112, 14706-14709 (2008). doi: 10.1021/jp806084d   DOI
32 Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US. Oxygen reduction reaction catalysts prepared from acetonitrile pyrolysis over alumina-supported metal particles. J Phys Chem B, 110, 18374-18384 (2006). doi: 10.1021/jp062206d.   DOI
33 Dorjgotov A, Ok JH, Jeon YW, Yoon SH, Shul YG. Activity and active sites of nitrogen-doped carbon nanotubes for oxygen reduction reaction. J Appl Electrochem, 43, 387-397 (2013). doi:10.1007/s10800-012-0523-0.   DOI
34 Yeager E. Electrocatalysts for O2 Reduction. Electrochim Acta, 29, 1527-1537 (1984). doi:10.1016/0013-4686(84)85006-9.   DOI
35 Wieser K. N4-chelates as electrocatalyst for cathodic oxygen reduction. Electrochim Acta, 31, 1073-1078 (1986). doi: 10.1016/0013-4686(86)80022-6.   DOI
36 Okada T, Katou K, Hirose T, Yuasa M, Sekine I. Oxygen Reduction on Pyrolytic Graphite Electrodes Modified with Electropolymerized Cobalt Salen Compounds. J Electrochem Soc, 146, 2562-2568 (1999). doi: 10.1149/1.1391972.   DOI
37 Torres J, Perry CC, Bransfield SJ, Fairbrother DH. Low-Temperature Oxidation of Nitrided Iron Surfaces. J Phys Chem B, 107, 5558-5567 (2003). doi:10.1021/jp027802w.   DOI
38 Zielke U, Huttinger KJ, Hoffman WP. Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon, 34, 983-998 (1996). doi:10.1016/0008-6223(96)00032-2.   DOI