• Title/Summary/Keyword: structural safety performance

Search Result 1,011, Processing Time 0.026 seconds

A Numerical Study on Flexure Performance of Enhanced Spun RC Pile with Reinforced Joint (원심성형 고성능 RC 말뚝의 이음부 보강에 대한 해석적 연구)

  • Joo, Sanghoon;Hwang, Hoonhee;Bae, Jaehyun;Lee, Jeehoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.70-77
    • /
    • 2018
  • In this study, the reinforced methods of joints were proposed to improve the structural performance of the enhanced spun reinforced concrete piles with joints. To verify the proposed methods, flexure performance was validated by finite element analysis considering both material and contact nonlinearity. Based on the previous study and those results of the analysis, it is concluded that the structural performance of the current joints system for the enhanced spun RC piles can be enhanced by applying the reinforced joints composed of extended circular band plates and studs. This proposed method showed the nearest structural behavior to the enhanced spun RC piles without joints. This numerical study will be used to further experimental study on the enhanced spun RC piles with reinforced joints.

Improvement of Shear Performance for High Ductile Fiber-Reinforced Mortar Slab-Column Connection in Flat Plate Structural System (고인성 복합섬유 모르타르를 이용한 플랫 플레이트 구조 슬래브-기둥 접합부의 전단성능 개선)

  • Ha Gee Joo;Kim Yun Yong;Shin Jong Hak;Yang Seung Hyeok;Hong Kun Ho;Kim Joung Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.145-148
    • /
    • 2005
  • Recently the construction of high-rise reinforced concrete building is progressively increased as the social demands. It is significantly important factors such as economy, the safety of structure, and the flexibility of internal space. Therefore new structural system is also required to be attained the reduction of story height, the flexibility and efficient use of space. The most suitable structural system is with the economy and flexibility, flat plate slab system in high-rise reinforced concrete building. In this research, it was focused in the improvement of shear performance in the flat plate system using high ductile fiber reinforced mortar. It was evaluated the shear performance in the critical region of slab-column connection. The flat plate system, designed by the high performance and safety, was developed as a new technique in the application of high-rise R/C building.

  • PDF

Structural Design Optimization of the Aluminum Space Frame Vehicle (알루미늄 스페이스 프레임 차량의 구조 최적화 설계 기법)

  • Kang, Hyuk;Kyoung, Woo-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.175-180
    • /
    • 2008
  • Due to the global environment problems and the consumer's need for higher vehicle performance, it becomes very important for the global car makers to reduce vehicle weight. To reduce vehicle weight, many car makers have tried to use lightweight materials, for example, aluminum, magnesium, and plastics, for the vehicle structures and components. Especially, the ASF(aluminum space frame) is known for the excellent concept of the vehicle to satisfy structural rigidity, safety performance and weight reduction. In this research, the design of experiments and the multi-disciplinary optimization technique were utilized to meet the weight and structural rigidity target of the ASF. For the structural performance of the ASF, the locations and the size of aluminum extruded frames, aluminum cast nodes, and the aluminum sheets were optimized. As a result, the optimization design procedure has been set up to meet both structural and weight target of the ASF, and the assembled ASF showed good structural performance and weight reduction.

FORM-based Structural Reliability Analysis of Dynamical Active Control System (동적능동제어시스템의 FORM기반 구조신뢰성해석)

  • Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.74-80
    • /
    • 2013
  • This study describes structural reliability analysis of actively-controlled structure for which random vibration analysis is incorporated into the first-order reliability method (FORM) framework. The existing approaches perform the reliability analysis based on the RMS response, whereas the proposed study uses the peak response for the reliability analysis. Therefore, the proposed approach provides us a meaningful performance measure of the active control system, i.e., realistic failure probability. In addition, it can deal with the uncertainties in the system parameters as well as the excitations in single-loop reliability analysis, whereas the conventional random vibration analysis requires double-loop reliability analysis; one is for the system parameters and the other is for stochastic excitations. The effectiveness of the proposed approach is demonstrated through a numerical example where the proposed approach shows fast and accurate reliability (or inversely failure probability) assessment results of the dynamical active control system against random seismic excitations in the presence of parametric uncertainties of the dynamical structural system.

Dynamic Response based Reliability Analysis of Structure with Passive Damper - Part 1: Assessment of Member Failure Probability (수동형 댐퍼를 장착한 구조물의 동적응답기반 신뢰성 해석 - 제1편: 부재별 파괴확률 산정)

  • Kim, Seung-Min;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.90-96
    • /
    • 2016
  • This study proposes a dynamic reliability analysis of control system as a method of quantitative evaluation of its performance in probabilistic terms. In this dynamic reliability analysis, the failure event is defined as an event that the dynamic response of the structural system exceeds a displacement limit, whereas the conventional reliability analysis method has limitations that do not properly assess the actual time history response of the structure subjected to dynamic loads, such as earthquakes and high winds, by taking the static response into account in the failure event. In this first paper, we discuss the control effect of the viscous damper on the seismic performance of the member-level failure where the failure event of the structural member consists of the union set of time-sequential member failures during the earthquake excitations and the failure probability of the earthquake-excited structural member is computed using system reliability approach to consider the statistical dependence of member failures between the subsequent time points. Numerical results demonstrate that the proposed approach can present a reliable assessment of the control performance of the viscous damper system in comparison with MCS method. The most important advantage of the proposed approach can provide us more accurate estimate of failure probability of the structural control system by using the actual time-history responses obtained by dynamic response analysis.

Structural Safety Analysis of Newly Developed Roof-Typed Falling Rock Protection System (루프형 낙석방지안전시설의 구조적 안전성 검토 연구)

  • Park, Cheol-U;Lee, Hak-Yong
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.50
    • /
    • pp.84-96
    • /
    • 2009
  • Road is typically constructed along ridge area of mountain because of topographical and economic reasons. Therefore, road may face lots of open cut slope which can easily cause rock falling. This study evaluates the structural safety of newly developed falling rock protection system which has a roof deck plate. The structural performance under self-weight, snow load and load from failing rock was investigated using a finite element numerical analysis method. From the analysis results, the H-beam space was limited not to exceed 2.2m. The deck plate was also safe under the examined loading condition. A hinge and connection in the system were investigated through detailed modelling and analysis. The results showed that the hinge was safe enough and that the connection should strengthened with appropriate stiffeners.

  • PDF

Structural Safety Analysis of Newly Developed Roof-Typed Falling Rock Protection System (루프형 낙성방지안전시설의 구조적 안전성 검토 연구)

  • Park, Cheol-Woo;Lee, Hak-Yoog
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.47-53
    • /
    • 2009
  • Road is typically constructed along ridge area of mountain because of topographical and economic reasons. Therefore, road may face lots of open cut slope which can easily cause rock falling. This study evaluates the structural safety of newly developed falling rock protection system which has a roof deck plate. The structural performance under self-weight, snow load and load from falling rock was investigated using a finite element numerical analysis method. From the analysis results, the H-beam space was limited not to exceed 2.2m. The deck plate was also safe under the examined loading condition. A hinge and connection in the system were investigated through detailed numerical modelling and analysis. The results showed that the hinge was safe enough and that the connection should strengthened with appropriate stiffeners.

Seismic optimization and performance assessment of special steel moment-resisting frames considering nonlinear soil-structure interaction

  • Saeed Gholizadeh;Arman Milany;Oguzhan Hasancebi
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.339-353
    • /
    • 2023
  • The primary objective of the current study is to optimize and evaluate the seismic performance of steel momentresisting frame (MRF) structures considering soil-structure interaction (SSI) effects. The structural optimization is implemented in the context of performance-based design in accordance with FEMA-350 at different confidence levels from 50% to 90% by taking into account fixed- and flexible-base conditions using an efficient metaheuristic algorithm. Nonlinear response-history analysis (NRHA) is conducted to evaluate the seismic response of structures, and the beam-on-nonlinear Winkler foundation (BNWF) model is used to simulate the soil-foundation interaction under the MRFs. The seismic performance of optimally designed fixed- and flexible-base steel MRFs are compared in terms of overall damage index, seismic collapse safety, and interstory drift ratios at different performance levels. Two illustrative examples of 6- and 12-story steel MRFs are presented. The results show that the consideration of SSI in the optimization process of 6- and 12-story steel MRFs results in an increase of 1.0 to 9.0 % and 0.5 to 5.0 % in structural weight and a slight decrease in structural seismic safety at different confidence levels.

Structural Capacity Evaluation of System Scaffolding using X-Type Advanced Guardrail (교차가새형 선행 안전난간을 적용한 시스템비계의 구조 성능 평가)

  • Park, J.D.;Lee, H.S.;Shin, W.S.;Kwon, Y.J.;Park, S.E.;Yang, S.S.;Jung, K.
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.49-58
    • /
    • 2020
  • In domestic construction sites, when installing steel pipe scaffolding and system scaffolding, the guardrails are installed after the installation of the work platforms. This conventional guardrail system (CGS) is always exposed to the risk of falls because the safety railing is installed later. In order to prevent fall disasters during erecting and dismantling scaffolds, it is necessary to introduce the advanced guardrail system (AGS) which installs railings in advance of climbing onto a work platform. For the introduction of the AGS, the structural performance of the system scaffolding applying the CGS and the AGS was compared and evaluated. The structural analysis of the system scaffold (height: 31 m and width: 27.4 m) with AGS confirmed that structural safety was ensured because the maximum stress of each element of the system scaffolding satisfies the allowable stress of each element. As a result of performance comparison of CGS and AGS for each element, the combined stress ratio of vertical posts in AGS was 6.4% lower than that of CGS. In addition, in the case of ledger and transom, the combined stress ratios of AGS and CGS were almost the same. The compression test of the assembled system scaffolding (three-storied, 1 bay) showed that the AGS had better performance than the CGS by 9.7% (8.91 kN). The cross bracing exceeds the limit on slenderness ratio of codes for structural steel design. But the safety factor for the compressive load of the cross bracing was evaluated as meeting the design criteria by securing 3 or more. In actual experiments, it was confirmed that brace buckling did not occur even though the overall scaffold was buckled. Therefore, in the case of temporary structures, it was proposed to revise the standards for limiting on slenderness ratio of secondary or auxiliary elements to recommendations. This study can be used as basic data for the introduction of AGS for installing guardrails in advance at domestic construction sites.

Feasibility Study of Submerged Floating Tunnels Moored by an Inclined Tendon System

  • Won, Deokhee;Kim, Seungjun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1191-1199
    • /
    • 2018
  • Concepts of submerged floating tunnels (SFTs) for land connection have been continuously suggested and developed by several researchers and institutes. To maintain their predefined positions under various dynamic environmental loading conditions, the submerged floating tunnels should be effectively moored by reasonable mooring systems. With rational mooring systems, the design of SFTs should be confirmed to satisfy the structural safety, fatigue, and operability design criteria related to tunnel motion, internal forces, structural stresses, and the fatigue life of the main structural members. This paper presents a feasibility study of a submerged floating tunnel moored by an inclined tendon system. The basic structural concept was developed based on the concept of conventional cable-stayed bridges to minimize the seabed excavation, penetration, and anchoring work by applying tower-inclined tendon systems instead of conventional tendons with individual seabed anchors. To evaluate the structural performance of the new type of SFT, a hydrodynamic analysis was performed in the time domain using the commercial nonlinear finite element code ABAQUS-AQUA. For the main dynamic environmental loading condition, an irregular wave load was examined. A JONSWAP wave spectrum was used to generate a time-series wave-induced hydrodynamic load considering the specific significant wave height and peak period for predetermined wave conditions. By performing a time-domain hydrodynamic analysis on the submerged floating structure under irregular waves, the motional characteristics, structural stresses, and fatigue damage of the floating tunnel and mooring members were analyzed to evaluate the structural safety and fatigue performance. According to the analytical study, the suggested conceptual model for SFTs shows very good hydrodynamic structural performance. It can be concluded that the concept can be considered as a reasonable structural type of SFT.