• Title/Summary/Keyword: structural rules

Search Result 348, Processing Time 0.023 seconds

Development of Optimum Structural Design System for Double Hull Oil Tankers (이중 선각 유조선의 최적 구조 설계 시스템 개발)

  • Chang-Doo Jang;Seung-Soo Na
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.118-126
    • /
    • 2000
  • An optimum structural design system for double hull oil tankers is developed based on the generalized slope deflection method which was previously proposed by the authors. For the optimization technique, the Hooke & Jeeves direct search method is applied to the minimum weight design problems with discrete design variables. A minimum weight design program is developed for the longitudinal members by the classification rules and for the transverse frames and the bulkhead members by the generalized slope deflection method. By this program, a minimum hull weight design of double hull oil tankers considering tank arrangement is performed and the design results are compared with existing ship. It is possible to find optimum tank arrangement and efficient types of hull structures for the minimum weight design of double hull oil tankers.

  • PDF

Prediction of elastic modulus of steel-fiber reinforced concrete (SFRC) using fuzzy logic

  • Gencoglu, Mustafa;Uygunoglu, Tayfun;Demir, Fuat;Guler, Kadir
    • Computers and Concrete
    • /
    • v.9 no.5
    • /
    • pp.389-402
    • /
    • 2012
  • In this study, the modulus of elasticity of low, normal and high strength steel fiber reinforced concrete has been predicted by developing a fuzzy logic model. The fuzzy models were formed as simple rules using only linguistic variables. A fuzzy logic algorithm was devised for estimating the elastic modulus of SFRC from compressive strength. Fibers used in all of the mixes were made of steel, and they were in different volume fractions and aspect ratios. Fiber volume fractions of the concrete mixtures have changed between 0.25%-6%. The results of the proposed approach in this study were compared with the results of equations in standards and codes for elastic modulus of SFRC. Error estimation was also carried out for each approach. In the study, the lowest error deviation was obtained in proposed fuzzy logic approach. The fuzzy logic approach was rather useful to quickly and easily predict the elastic modulus of SFRC.

Semi-active structural fuzzy control with MR dampers subjected to near-fault ground motions having forward directivity and fling step

  • Ghaffarzadeh, Hosein
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.595-617
    • /
    • 2013
  • Semi-active control equipments are used to effectually enhance the seismic behavior of structures. Magneto-rheological (MR) dampers are semi-active devices that can be utilized to control the response of structures during seismic loads and have received voracious attention for response suppression. They supply the adaptability of active devices and stability and reliability of passive devices. This paper presents an optimal fuzzy logic control scheme for vibration mitigation of buildings using magneto-rheological dampers subjected to near-fault ground motions. Near-fault features including a directivity pulse in the fault-normal direction and a fling step in the fault-parallel direction are considered in the requisite ground motion records. The membership functions and fuzzy rules of fuzzy controller were optimized by genetic algorithm (GA). Numerical study is performed to analyze the influences of near-fault ground motions on a building that is equipped with MR dampers. Considering the uncontrolled system response as the base line, the proposed method is scrutinized by analogy with that of a conventional maximum dissipation energy (MED) controller to accentuate the effectiveness of the fuzzy logic algorithm. Results reveal that the fuzzy logic controllers can efficiently improve the structural responses and MR dampers are quite promising for reducing seismic responses during near-fault earthquakes.

Hysteresis modelling of reinforced concrete columns under pure cyclic torsional loading

  • Mondal, Tarutal Ghosh;Kothamuthyala, Sriharsha R.;Prakash, S. Suriya
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.11-21
    • /
    • 2017
  • It has been observed in the past that, the reinforced concrete (RC) bridge columns are very often subjected to torsional moment in addition to flexure and shear during seismic vibration. Ignoring torsion in the design can trigger unexpected shear failure of the columns (Farhey et al. 1993). Performance based seismic design is a popular design philosophy which calls for accurate prediction of the hysteresis behavior of structural elements to ensure safe and economical design under earthquake loading. However, very few investigations in the past focused on the development of analytical models to accurately predict the response of RC members under cyclic torsion. Previously developed hysteresis models are not readily applicable for torsional loading owing to significant pinching and stiffness degradation associated with torsion (Wang et al. 2014). The present study proposes an improved polygonal hysteresis model which can accurately predict the hysteretic behavior of RC circular and square columns under torsion. The primary curve is obtained from mechanics based softened truss model for torsion. The proposed model is validated with test data of two circular and two square columns. A good correlation is observed between the predicted and measured torque-twist behavior and dissipated energy.

Damage Detection in a Beam Structure Using Modal Strain Energy (빔 구조물의 모달 변형에너지를 이용한 손상탐지)

  • 박수용;최상현
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.333-342
    • /
    • 2003
  • The objective of this paper is to present an algorithm to locate and size damage in a beam structure. The method uses the changes in the modal strain energy distribution. A damage index, utilized to identify possible location and corresponding severity of local damage, is formulated and expressed in terms of modal displacements that can be obtained from mode shapes of the undamaged and the damaged structures. The possible damage locations in the structure arc determined by the application of damage indicator according to previously developed decision rules. The robustness and effectiveness of the method arc demonstrated using numerical examples of beam structures with simulated damage.

Condition assessment for high-speed railway bridges based on train-induced strain response

  • Li, Zhonglong;Li, Shunlong;Lv, Jia;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.199-219
    • /
    • 2015
  • This paper presents the non-destructive evaluation of a high-speed railway bridge using train-induced strain responses. Based on the train-track-bridge interaction analysis, the strain responses of a high-speed railway bridge under moving trains with different operation status could be calculated. The train induced strain responses could be divided into two parts: the force vibration stage and the free vibration stage. The strain-displacement relationship is analysed and used for deriving critical displacements from theoretical stain measurements at a forced vibration stage. The derived displacements would be suitable for the condition assessment of the bridge through design specifications defined indexes and would show certain limits to the practical application. Thus, the damage identification of high-speed railways, such as the stiffness degradation location, needs to be done by comparing the measured strain response under moving trains in different states because the vehicle types of high-speed railway are relatively clear and definite. The monitored strain responses at the free vibration stage, after trains pass through the bridge, would be used for identifying the strain modes. The relationship between and the degradation degree and the strain mode shapes shows certain rules for the widely used simply supported beam bridges. The numerical simulation proves simple and effective for the proposed method to locate and quantify the stiffness degradation.

A Design System of Dies for Hot Extrusion of Structural Shapes from Aluminum Alloys (알루미늄 합금 형재의 열간압출 금형설계 시스템)

  • Cho, Hae-Yong;Kim, Kwan-Woo;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.131-136
    • /
    • 2002
  • A design system of dies for hot extrusion of structural shapes such as Z's, L's, T's, U's and H's from aluminium alloys was developed in this study. The developed design system of dies is based of estimated die design rule system. The design rules for die design are obtained from the handbooks, plasticity theories and relevant references. The environment of the system is AutoCAD and AutoLISP, the graphic programming language was used for the configuration of the system. This system includes five major modules such as section shape design module, die opening number module, die opening layout module, die correction module and die bearing design module that are used to determine design variables. This system would be used to design of dies for hot extrusion from aluminum alloys and widely used in manufacturing course.

A Study on Subjective Assessment of Knit Fabric by ANFIS

  • Ju Jeong-Ah;Ryu Hyo-Seon
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.203-212
    • /
    • 2006
  • The purpose of this study was to examine the effects of the structural properties of plain knit fabrics on the subjective perception of textures, sensibilities, and preference among consumers. This study, then, aimed to provide useful information with respect to planning and designing knitted fabrics by predicting the subjective characteristics analyzed according to their structural properties. For this purpose, we employed statistical analysis tools, such as factor and regression analysis and an adaptive-network-based fuzzy inference system(ANFIS), thereby combining the merits of fuzzy and neural networks and presupposing a non-linear relationship. Through factor analysis, we also categorized the subjective textures into 'roughness', 'softness', 'bulkiness' and 'stretch-ability' with R2=70.32%: and categorized the sensibilities into 'Stable/Neat', 'Natural/Comfortable' and 'Feminine/Elegant' with R2=68.12%. We analyzed subjective textures, sensibilities, and preference with ANFIS, assuming non-linear relationships; consequently, we were able to generate three or four fuzzy rules using wool/rayon fiber content and loop length as input data. The textures of roughness and softness exhibited a linear relationship, but other subjective characteristics demonstrated a non-linear input-output relationship. Compared with linear regression analysis, the ANFIS exhibited had higher predictive power with respect to predicting subjective characteristics.

Fire Loading Analysis of Underground Box Structure with Considering of Concrete Spalling II : Load Carrying Capacity (박리를 고려한 지하박스구조물의 화재하중해석 II : 내하력)

  • Lee, Gye-Hee;Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.485-492
    • /
    • 2007
  • In this study, based on the temperature distribution and the spalling histories those obtained in the companion paper, the thermal stress and moments of underground box structure were estimated. Additionally, the ultimate sectional moment considering with the thermal nonlinearities of material were estimated and the load carrying capacity of underground box structure was also obtained. As results, the load carrying capacity of negative moment part was dominated by thermal moment that come from thermal gradient of the section. However, the load carrying capacity of the positive moment part was rules by the yield stress of rebar that exposed to the high temperature induced spalling phenomena.

Development of Automatic Data Generation Program for Finite Element Structural Analysis of Oil Tankers (유조선 구조해석을 위한 유한요소 입력자동화 프로그램의 개발)

  • S.W. Park;J.G. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.149-156
    • /
    • 1992
  • An efficient preprocessor is developed for the finite element structural analysis of a ship's hull module. A hull module structure is divided into three groups for easy data handling : longitudinal members, transverse members, and transverse bulkheads. Based on the classification rules and design practices at shipyards, the preprocessor can create finite element nodes, elements, boundary conditions, and loadings automatically. By connecting the preprocessor with the ANSYS program, we can obtain the results of ship structureal analysis more efficiently. Applied to a typical double-hull oil tanker, the present preprocessor shows various advantages over conventional general-purpose preprocessors.

  • PDF