• Title/Summary/Keyword: structural response curves

Search Result 152, Processing Time 0.029 seconds

Analysis and design of metal-plate-connected joints subjected to buckling loads

  • Hussein, R.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.5
    • /
    • pp.417-432
    • /
    • 2000
  • A comprehensive analytic study has been conducted to investigate the instability problems of metal-plate-connected (MPC) joints in light frame trusses. The primary objective in this study is to determine the governing factors that constitute the buckling of the metal connectors and their effects on the structural response of joints. Another objective is to recommend design curves for the daily structural design of these joints. The numeric data presented in this paper has emerged from a broad base that was founded on over 350 advanced computer simulations, and was supported by available experimental results obtained by others. This basic-to-applied research includes practical engineering parameters such as size of gaps, shear lengths, gauge (plate thickness) of connectors, size of un-braced areas, failure modes, and progressive disintegration of joints. Square-end members have been emphasized though the results cover the custom-made fitted joints. The results indicate that chord shears cause and dominate the buckling of MPC joints, and the shear length has a more pronounced effect than the size of gaps. Further, large gauges and small un-braced areas improve the buckling response. Several practical recommendations have been suggested throughout the paper such as keeping the ratio of gap/shear length below 3/4 for improving the buckling strength. The study reveals that multi-area joints should not be simplified as single web-to-chord MPC joints such as keeping the ratio of gap/shear length below 3/4 for improving the buckling strength, even where one web is in tension and the other in compression. Finally, the results obtained from this study favorably agree with experimental data by others, and the classic buckling theories for other structural components.

Development of Stochastic Seismic Performance Evaluation Method for Structural Performance Point Based on Capacity Spectrum Method (역량스펙트럼법을 통한 구조물 성능점의 확률적 기반 내진성능평가기법 개발)

  • Choi, Insub;Jang, Jisang;Kim, JunHee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.523-530
    • /
    • 2017
  • In this study, a method of probabilistic evaluation of the performance point of the structure obtained by capacity spectrum method (CSM) is presented. The performance point of the 4-story and 1-bay steel structure was determined by using CSM according to ATC-40. In order to analyze whether the demand spectrums exceed the performance limit of the structure, the limit displacements are derived for the performance limit of the structure defined from the plastic deformation angle of the structural member. In addition, by selecting a total of 30 artificial seismic wave having the response spectrum similar to the design response spectrum, the fragility curves were derived by examining whether the response spectrum obtained from the artificial seismic wave were exceeded each performance limit according to the spectral acceleration. The maximum likelihood method was used to derive the fragility curve using observed excess probabilities. It has been confirmed that there exists a probability that the response acceleration value of the design response spectrum corresponding to each performance limit exceeds the performance limit. This method has a merit that the stochastic evaluation can be performed considering the uncertainty of the seismic waves with respect to the performance point of the structure, and the analysis time can be shortened because the incremental dynamic analysis (IDA) is not necessary.

Covariance-driven wavelet technique for structural damage assessment

  • Sun, Z.;Chang, C.C.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.127-140
    • /
    • 2006
  • In this study, a wavelet-based covariance-driven system identification technique is proposed for damage assessment of structures under ambient excitation. Assuming the ambient excitation to be a white-noise process, the covariance computation is shown to be able to separate the effect of random excitation from the response measurement. Wavelet transform (WT) is then used to convert the covariance response in the time domain to the WT magnitude plot in the time-scale plane. The wavelet coefficients along the curves where energy concentrated are extracted and used to estimate the modal properties of the structure. These modal property estimations lead to the calculation of the stiffness matrix when either the spectral density of the random loading or the mass matrix is given. The predicted stiffness matrix hence provides a direct assessment on the possible location and severity of damage which results in stiffness alteration. To demonstrate the proposed wavelet-based damage assessment technique, a numerical example on a 3 degree-of-freedom (DOF) system and an experimental study on a three-story building model, which are all under a broad-band excitation, are presented. Both numerical and experimental results illustrate that the proposed technique can provide an accurate assessment on the damage location. It is however noted that the assessment of damage severity is not as accurate, which might be due to the errors associated with the mode shape estimations as well as the assumption of proportional damping adopted in the formulation.

Concept Design of a Parallel-type Tuned Mass Damper - Tuned Sloshing Damper System for Building Motion Control in Wind

  • Lee, Chien-Shen;Love, J. Shayne;Haskett, Trevor C.;Robinson, Jamieson K.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.93-97
    • /
    • 2021
  • Supplementary damping systems, such as tuned mass dampers (TMDs) and tuned sloshing dampers (TSDs) - also known as tuned liquid dampers (TLDs) - have been successfully employed to reduce building motion during wind events. A design of a damping system consisting of a TMD and two TSDs performing in unison has been developed for a tall building in Taiwan to reduce wind-induced motion. The architecturally exposed TMD will also be featured as a tourist attraction. The dual-purpose TSD tanks will perform as fire suppression water storage tanks. Linearized equivalent mechanical TSD and TMD models are coupled to the structure to simulate the multi-degree of freedom system response. Frequency response curves for the structure with and without the damping system are created to evaluate the performance of the damping system. The performance of the combined TMD-TSD system is evaluated against a conventional TMD system by computing the effective damping produced by each system. The proposed system is found to have superior performance in acceleration reduction. The combined TMD-TSD system is an effective and affordable means to reduce the wind-induced resonant response of tall buildings.

Probabilistic capacity spectrum method considering soil-structure interaction effects (지반-구조물 상호작용 효과를 고려한 확률론적 역량스펙트럼법)

  • Nocete, Chari Fe M.;Kim, Doo-Kie;Kim, Dong-Hyawn;Cho, Sung-Gook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.65-70
    • /
    • 2008
  • The capacity spectrum method (CSM) is a deterministic seismic analysis approach wherein the expected seismic response of a structure is established as the intersection of the demand and capacity curves. Recently, there are a few studies about a probabilistic CSM where uncertainties in design factors such as material properties, loads, and ground motion are being considered. However, researches show that soil-structure interaction also affects the seismic responses of structures. Thus, their uncertainties should also be taken into account. Therefore, this paper presents a probabilistic approach of using the CSM for seismic analysis considering uncertainties in soil properties. For application, a reinforced concrete bridge column structure is employed as a test model. Considering the randomness of the various design parameters, the structure's probability of failure is obtained. Monte Carlo importance sampling is used as the tool to assess the structure's reliability when subjected to earthquakes. In this study, probabilistic CSM with and without consideration of soil uncertainties are compared and analyzed. Results show that the analysis considering soil structure interaction yields to a greater probability of failure, and thus can lead to a more conservative structural design.

  • PDF

Further study on improvement on strain concentration in through-diaphragm connection

  • Qin, Ying;Zhang, Jingchen;Shi, Peng;Chen, Yifu;Xu, Yaohan;Shi, Zuozheng
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.135-148
    • /
    • 2021
  • Hollow structural section (HSS) columns have been increasingly popular due to their structural and architectural merits. However, practical difficulty lies in developing proper connections. The through-diaphragm connections are considered as suitable connection type that is widely adopted in Asian countries. However, the stress concentration occurs at the location connecting through-diaphragm and steel beam. Furthermore, the actual load path from the beam flange is not uniformly transferred to the HSS column as conventionally assumed. In this paper, tensile tests were further conducted on three additional specimens with beam flange plate to evaluate the load versus displacement response. The load-displacement curves, yield and ultimate capacity, ductility ratio were obtained. Furthermore, the strain development at different loading levels was discussed comprehensively. It is shown that the studied connection configuration significantly reduces the stress concentration. Meanwhile, simplified trilinear load-displacement analytical model for specimen under tensile load was presented. Good agreement was found between the theoretical and experimental results.

Dynamic stability and structural improvement of vibrating electrically curved composite screen subjected to spherical impactor: Finite element and analytical methods

  • Xiao, Caiyuan;Zhang, Guiju
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.533-552
    • /
    • 2022
  • The current article deals with the dynamic stability, and structural improvement of vibrating electrically curved screen on the viscoelastic substrate. By considering optimum value for radius curvature of the electrically curved screen, the structure improvement of the system occurs. For modeling the electrically system, the Maxwell's' equation is developed. Hertz contact model in employed to obtain contact forces between impactor and structure. Moreover, variational methods and nonlinear von Kármán model are used to derive boundary conditions (BCs) and nonlinear governing equations of the vibrating electrically curved screen. Galerkin and Multiple scales solution approach are coupled to solve the nonlinear set of governing equations of the vibrating electrically curved screen. Along with the analytical solution, 3D finite element simulation via ABAQUS package is provided with the aid of a FE package for simulating the current system's response. The results are categorized in 3 different sections. First, effects of geometrical and material parameters on the vibrational performance and stability of the curves panel. Second, physical properties of the impactor are taken in to account and their effect on the absorbed energy and velocity profile of the impactor are presented. Finally, effect of the radius and initial velocity on the mode shapes of the current structure is demonstrated.

Combination Procedure for Seismic Correlation Coefficient in Fragility Curves of Multiple Components (다중기기 취약도곡선의 지진상관계수 조합 절차)

  • Kim, Jung Han;Kim, Si Young;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.141-148
    • /
    • 2020
  • For the important safety system, two or more units of identical equipment or redundant components with similar function were installed to prevent abnormal failure. If the failure probability of such equipment is independent, this redundancy could increase the system safety remarkably. However, if the failure of each component is highly correlated by installing in a structure or experiencing an earthquake event, the expected redundancy effect will decrease. Therefore, the seismic correlation of the equipment should be evaluated quantitatively for the seismic probabilistic safety assessment. The correlation effect can be explained in the procedure of constructing fragility curves. In this study, several methodologies to quantify the seismic correlation in the failure probability calculation for multiple components were reviewed and two possible ways considering the realistic situation were selected. Simple examples were tested to check the applicability of these methods. The conversion method between these two methods was suggested to render the evaluation using the advantages of each method possible.

Guided wave field calculation in anisotropic layered structures using normal mode expansion method

  • Li, Lingfang;Mei, Hanfei;Haider, Mohammad Faisal;Rizos, Dimitris;Xia, Yong;Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.157-174
    • /
    • 2020
  • The guided wave technique is commonly used in structural health monitoring as the guided waves can propagate far in the structures without much energy loss. The guided waves are conventionally generated by the surface-mounted piezoelectric wafer active sensor (PWAS). However, there is still lack of understanding of the wave propagation in layered structures, especially in structures made of anisotropic materials such as carbon fiber reinforced polymer (CFRP) composites. In this paper, the Rayleigh-Lamb wave strain tuning curves in a PWAS-mounted unidirectional CFRP plate are analytically derived using the normal mode expansion (NME) method. The excitation frequency spectrum is then multiplied by the tuning curves to calculate the frequency response spectrum. The corresponding time domain responses are obtained through the inverse Fourier transform. The theoretical calculations are validated through finite element analysis and an experimental study. The PWAS responses under the free, debonded and bonded CFRP conditions are investigated and compared. The results demonstrate that the amplitude and travelling time of wave packet can be used to evaluate the CFRP bonding conditions. The method can work on a baseline-free manner.

Analytical model for high-strength concrete columns with square cross-section

  • Campione, G.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.295-316
    • /
    • 2008
  • In the present paper a mechanical model to predict the compressive response of high strength short concrete columns with square cross-section confined by transverse steel is presented. The model allows one to estimate the equivalent confinement pressures exercised by transverse steel during the loading process taking into account of the interaction of the stirrups with the inner core both in the plane of the stirrups and in the space between two successive stirrups. The lateral pressure distributions at hoop levels are obtained by using a simple model of elastic beam on elastic medium simulating the interaction between stirrups and concrete core, including yielding of steel stirrups and damage of concrete core by means of the variation in the elastic modulus and in the Poisson's coefficient. Complete stress-strain curves in compression of confined concrete core are obtained considering the variation of the axial forces in the leg of the stirrup during the loading process. The model was compared with some others presented in the literature and it was validated on the basis of the existing experimental data. Finally, it was shown that the model allows one to include the main parameters governing the confinement problems of high strength concrete members such as: - the strength of plain concrete and its brittleness; - the diameter, the pitch and the yielding stress of the stirrups; - the diameter and the yielding stress of longitudinal bars; - the side of the member, etc.