• Title/Summary/Keyword: structural redundancy

Search Result 75, Processing Time 0.025 seconds

A Study on Performance Elevation of the deteriorated Concrete Girder Bridge by Continuous and External Tendons (연속화와 외부 프리스트레스 도입에 의한 노후된 콘크리트 거더교의 성능향상에 관한 연구)

  • Park, Seung-Bum;Hong, Seok-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.159-166
    • /
    • 2000
  • The development of external prestressing methods has been one of the major trends in the concrete bridge constructions over the past decades. One of the promising methods to enhance the flexural strength of a externally prestressed girder is to place the tendons with large eccentricities. The analysis and design of composite girders prestressed by external tendons involve difficulties related mainly to the position of anchorages and the construction sequences. This study was conducted on the concrete bridges reinforced by the continuous girders and the external prestressing. The test results in this study showed that the external prestressing of a composite girder increased the range of the elastic behavior, reduced deflections, increased ultimate strength, and added to the redundancy by providing the multiple stress paths.

  • PDF

After-fracture behaviour of steel-concrete composite twin I-girder bridges: An experimental study

  • Lin, Weiwei
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.139-149
    • /
    • 2022
  • To simplify the design and reduce the construction cost of traditional multi-girder structural systems, twin I-girder structures are widely used in many countries in recent years. Due to the concern on post-fracture redundancy, however, twin girder bridges are currently classified as fracture critical structures in AASHTO specifications for highway bridges. To investigate the after-fracture behavior of such structures, a composite steel and concrete twin girder specimen was built and an artificial fracture through the web and the bottom flange was created on one main girder. The static loading test was performed to investigate its mechanical performance after a severe fracture occurred on the main girder. Applied load and vertical displacement curves, and the applied load versus strain relationships at key sections were measured. To investigate the load distribution and transfer capacities between two steel girders, the normal strain development on crossbeams was also measured during the loading test. In addition, both shear and normal strains of studs were also measured in the loading test to explore the behavior of shear connectors in such bridges. The functions and structural performance of structural members and possible load transfer paths after main girder fractures in such bridges were also discussed. The test results indicate in this study that a typical twin I-girder can resist a general fracture on one of its two main girders. The presented results can provide references for post-fracture performance and optimization for the design of twin I-girder bridges and similar structures.

Optimal sensor placement for bridge damage detection using deflection influence line

  • Liu, Chengyin;Teng, Jun;Peng, Zhen
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.169-181
    • /
    • 2020
  • Sensor placement is a crucial aspect of bridge health monitoring (BHM) dedicated to accurately estimate and locate structural damages. In addressing this goal, a sensor placement framework based on the deflection influence line (DIL) analysis is here proposed, for the optimal design of damage detection-oriented BHM system. In order to improve damage detection accuracy, we explore the change of global stiffness matrix, damage coefficient matrix and DIL vector caused by structural damage, and thus develop a novel sensor placement framework based on the Fisher information matrix. Our approach seeks to determine the contribution of each sensing node to damage detection, and adopts a distance correction coefficient to eliminate the information redundancy among sensors. The proposed damage detection-oriented optimal sensor placement (OSP) method is verified by two examples: (1) a numerically simulated three-span continuous beam, and (2) the Pinghu bridge which has existing real damage conditions. These two examples verify the performance of the distance corrected damage sensitivity of influence line (DSIL) method in significantly higher contribution to damage detection and lower information redundancy, and demonstrate the proposed OSP framework can be potentially employed in BHM practices.

Investigation of dynamic P-Δ effect on ductility factor

  • Han, Sang Whan;Kwon, Oh-Sung;Lee, Li-Hyung
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.249-266
    • /
    • 2001
  • Current seismic design provisions allow structures to deform into inelastic range during design level earthquakes since the chance to meet such event is quite rare. For this purpose, design base shear is defined in current seismic design provisions as the value of elastic seismic shear force divided by strength reduction factor, R (${\geq}1$). Strength reduction factor generally consists of four different factors, which can account for ductility capacity, overstrength, damping, and redundancy inherent in structures respectively. In this study, R factor is assumed to account for only the ductility rather than overstrength, damping, and redundancy. The R factor considering ductility is called "ductility factor" ($R_{\mu}$). This study proposes ductility factor with correction factor, C, which can account for dynamic P-${\Delta}$ effect. Correction factor, C is established as the functional form since it requires computational efforts and time for calculating this factor. From the statistical study using the results of nonlinear dynamic analysis for 40 earthquake ground motions (EQGM) it is shown that the dependence of C factor on structural period is weak, whereas C factor is strongly dependant on the change of ductility ratio and stability coefficient. To propose the functional form of C factor statistical study is carried out using 79,920 nonlinear dynamic analysis results for different combination of parameters and 40 EQGM.

Signal Transduction of the Cytokine Receptor

  • Watanabe, Sumiko
    • Animal cells and systems
    • /
    • v.2 no.2
    • /
    • pp.153-164
    • /
    • 1998
  • Cytokines regulate proliferation, differentiation and functions of haemotopoietic cells. Each cytokine possesses a variety of activities on various target cells (pleiotropy) and various cytokines have similar and overlapping activities on the same target cells (redundancy). The nature of these cytokine activities predicts unique feature of cytokine receptors, namely, cytokine has multiple receptors, different cytokines share a common receptor, and different cytokine receptors are linked to common signaling pathways. cDNA cloning of genes for cytokine receptors revealed distinct sets of receptor family with different structural features. The cytokine receptor superfamily consists of a largest family, and contains more than twenty cytokine receptor subunits. This receptor has common structural features in both extracellular and intracellular regions without tyrosine kinase domain. Another striking feature of the receptor is to share common subunit of multiple cytokines, which partly explains the redundancy of activities of some cytokines. Recent studies revealed detailed signaling events of the cytokine receptor, the primary activation of JAK and subsequent phosphorylation of tyrosine residues of receptor, and various cellular proteins. Many SH2 containing adapter proteins play an important role in cytokine signals, and this system has similarities with tyrosine kinase receptor signal transduction. STAT may mainly account for cytokine specific functions as suggested by knockout mice studies. It is of importance to note that cytokine activates multiple signaling pathways and the balance and combination of related signaling events may determine the specificity of functions of cytokines.

  • PDF

Determination of the Optimal Checkpoint and Distributed Fault Detection Interval for Real-Time Tasks on Triple Modular Redundancy Systems (삼중구조 시스템의 실시간 태스크 최적 체크포인터 및 분산 고장 탐지 구간 선정)

  • Seong Woo Kwak;Jung-Min Yang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.527-534
    • /
    • 2023
  • Triple modular redundancy (TMR) systems can continue their mission by virtue of their structural redundancy even if one processor is attacked by faults. In this paper, we propose a new fault tolerance strategy by introducing checkpoints into the TMR system in which data saving and fault detection processes are separated while they corporate together in the conventional checkpoints. Faults in one processor are tolerated by synchronizing the state of three processors upon detecting faults. Simultaneous faults occurring to more than one processor are tolerated by re-executing the task from the latest checkpoint. We propose the checkpoint placement and fault detection strategy to maximize the probability of successful execution of a task within the given deadline. We develop the Markov chain model for the TMR system having the proposed checkpoint strategy, and derive the optimal fault detection and checkpoint interval.

A Study on the Ultimate Strength Behavior according to Analysis Boundary at Stiffened Plate (선체보강판의 해석영역에 따른 최종강도거동에 관한 연구)

  • 박주신;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.262-269
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used. On this study, to investigate effect of analysis range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of large merchant ship structures. For FEA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF

Non-linear incidental dynamics of frame structures

  • Radoicic, Goran N.;Jovanovic, Miomir Lj.;Marinkovic, Dragan Z.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1193-1208
    • /
    • 2014
  • A simulation of failures on responsible elements is only one form of the extreme structural behavior analysis. By understanding the dynamic behavior in incidental situations, it is possible to make a special structural design from the point of the largest axial force, stress and redundancy. The numerical realization of one such simulation analysis was performed using FEM in this paper. The boundary parameters of transient analysis, such as overall structural damping coefficient, load accelerations, time of load fall and internal forces in the responsible structural elements, were determined on the basis of the dynamic experimental parameters. The structure eigenfrequencies were determined in modal analysis. In the study, the basic incidental models were set. The models were identified by many years of monitoring incidental situations and the most frequent human errors in work with heavy structures. The combined load models of structure are defined in the paper since the incidents simply arise as consequences of cumulative errors and failures. A feature of a combined model is that the single incident causes the next incident (consecutive timing) as well as that other simple dynamic actions are simultaneous. The structure was observed in three typical load positions taken from the crane passport (range-load). The obtained dynamic responses indicate the degree of structural sensitivity depending on the character of incident. The dynamic coefficient KD was adopted as a parameter for the evaluation of structural sensitivity.

Analysis of structural dynamic reliability based on the probability density evolution method

  • Fang, Yongfeng;Chen, Jianjun;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.201-209
    • /
    • 2013
  • A new dynamic reliability analysis of structure under repeated random loads is proposed in this paper. The proposed method is developed based on the idea that the probability density of several times random loads can be derived from the probability density of single-time random load. The reliability prediction models of structure based on time responses under several times random loads with and without strength degradation are obtained by using the stress-strength interference theory and probability density evolution method. The resulting differential equations in the prediction models can be solved by using the forward finite difference method. Then, the probability density functions of strength redundancy of the structures can be obtained. Finally, the structural dynamic reliability can be calculated using integral method. The efficiency of the proposed method is demonstrated numerically through a speed reducer. The results have shown that the proposed method is practicable, feasible and gives reasonably accurate prediction.

OPTIMAL RELIABILITY DESIGN FOR THIN-WALLED BEAM OF VEHICLE STRUCTURE CONSIDERING VIBRATION

  • Lee, S.B.;Baik, S.;Yim, H.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.135-140
    • /
    • 2003
  • In the deterministic optimization of a structural system, objective function, design constraints and design variables, are treated in a nonstatistical fashion. However, such deterministic engineering optimization tends to promote the structural system with lest reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. Therefore, a balance must be developed between the satisfactions of the design requirements and the objectives of reducing manufacturing cost. This paper proposes the reliability-based design optimization (RBDO) technique, which enables the optimum design that considers confidence level for the vibration characteristics of structural system. Response surface method (RSM) is utilized to approximate the performance functions describing the system characteristics in the RBDO procedure. The proposed optimization technique is applied to the pillar section design considering natural frequencies of a vehicle structure.