• Title/Summary/Keyword: structural reaction

Search Result 1,079, Processing Time 0.024 seconds

Dynamic Behaviors of Externally-stimulated Monolayers on the Water Surface (외부 자격에 의한 수면상 단분자막의 동적 거동)

  • 배명한;송경호;박태곤;박근호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.318-325
    • /
    • 2000
  • Dynamic behaviors of saturated-fatty acids $C_{16}$, $C_{18}$, $C_{20}$ and 8A5H with azobenzene were measured by displacement current method when the molecules are stimulated by pressure light and heat. When a barrier was compressed I-A, $\pi$-A isotherms of $C_{16}$, $C_{18}$, and $C_{20}$ were similar to each other but the displacement current of $C_{20}$ which has a long alkyl chain was relatively low. 8A5H showed the form of double liquid films and had a reversible reaction when a barrier was compressed and then expanded. When the molecules of 8A5H were stimulated by 365[nm] light the positive currents which were generated by the structural changes from trans to cis were measured. But the negative currents of the structural changes from cis to trans by 450[nm] light were too weak to detect. When the temperature of the water subphase was increased the surface pressures of the monolayers were increased early because of the thermal activations of the molecules and the double liquid films of 8A5H were disappeared above 40[$^{\circ}C$]EX>].

  • PDF

Verification of Linear FE Model for Nonlinear SSI Analysis by Boundary Reaction Method (경계반력법에 의한 비선형 SSI 해석을 위한 선형 FE 해석모델 검증)

  • Lee, Gye Hee;Hong, Kwan Young;Lee, Eun Haeng;Kim, Jae Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.95-102
    • /
    • 2014
  • In this paper, a coupling scheme for applying finite element analysis(FEA) programs, such as, LS-DYNA and MIDAS/Civil, to a nonlinear soil structure interaction analysis by the boundary reaction method(BRM) is presented. With the FEA programs, the structure and soil media are discretized by linear or nonlinear finite elements. To absorb the outgoing elastic waves to unbounded soil region as much as possible, the PML elements and viscous-spring elements are used at the outer FE boundary, in the LS-DYNA model and in MIDAS/Civil model, respectively. It is also assumed that all the nonlinear elements in the problem are limited to structural region. In this study, the boundary reaction forces for the use in the BRM are calculated using the KIESSI-3D program by solving soil-foundation interaction problem subjected to incident seismic waves. The effectiveness of the proposed approach is demonstrated with a linear SSI seismic analysis problem by comparing the BRM solution with the conventional SSI solution. Numerical comparison indicates that the BRM can effectively be applied to a nonlinear soil-structure analysis if motions at the foundation obtained by the BRM for a linear SSI problem excluding the nonlinear structure is conservative.

Elastic/Plastic High-temperature Structural Analysis on the Small Scale PHE Prototype (소형 공정열교환기 시제품에 대한 탄소성 고온구조해석)

  • Song, Kee-nam;Lee, H-Y;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • PHE(Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR(Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established a small-scale gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype made of Hastelloy-X to be tested in the small-scale gas loop. Results from the elastic structural analysis on the PHE prototype were reported in the previous article. In order to investigate the macroscopic structural characteristics and behavior of the PHE prototype under the test condition of the small-scale gas loop far more in detail, elastic-plastic high-temperature structural-analysis of the PHE prototype was carried out in this study.

Structural performance of fiber reinforced cementitious plinths in precast girder bridges

  • Gergess, Antoine N;Challita, Julie
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.313-323
    • /
    • 2022
  • Steel laminated elastomeric bearings are commonly used in bridge structures to control displacements and rotations and transfer forces from the superstructure to the substructure. Proper knowledge of design, fabrication and erection procedures is important to ensure stability and adequate structural performance during the lifetime of the bridge. Difference in elevations sometimes leads to large size gaps between the bearing and the girder which makes the grout thickness that is commonly used for leveling deviate beyond standards. This paper investigates the structural response of High Strength Fiber Reinforced Cementitious (HSFRC) thin plinths that are used to close gaps between bearing pads and precast girders. An experimental program was developed for this purpose where HSFRC plinths of different size were cast and tested under vertical loads that simulate bridge loading in service. The structural performance of the plinths was closely monitored during testing, mainly crack propagation, vertical reaction and displacement. Analytically, the HSFRC plinth was analyzed using the beam on elastic foundation theory as the supporting elastomeric bearing pads are highly compressible. Closed form solutions were derived for induced displacement and forces and comparisons were made between analytical and experimental results. Finally, recommendations were made to facilitate the practical use of HSFRC plinths in bridge construction based on its enhanced load carrying capacity in shear and flexure.

Effect of plate slope and water jetting on the penetration depth of a jack-up spud-can for surficial sands

  • Han, Dong-Seop;Kim, Seung-Jun;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.263-278
    • /
    • 2014
  • The spudcan requires the suitable design considering the soil, platform, and environmental conditions. Its shape needs to be designed to secure sufficient reaction of soil so that it can prevent overturning accidents. Its shape also has to minimize the installation and extraction time. Even in the same soil condition, the reaction of soil may be different depending on the shape of spud can, mainly the slope of top and bottom plates. Therefore, in this study, the relation between the slope of plates and the reaction of soil with and without water jetting is analyzed to better understand their interactions and correlations. For the investigation, a wind turbine installation jack-up rig (WTIJ) is selected as the target platform and the Gulf of Mexico is considered as the target site. A multi layered (sand overlying two clays) soil profile is applied as the assumed soil condition and the soil-structure interaction (SSI) analysis is performed by using ANSYS to analyze the effect of the slope change of the bottom plate and water jetting on the reaction of soil. This kind of investigation and simulation is needed to develop optimal and smart spudcan with water-jetting control in the future.

Numerical prediction of stress and displacement of ageing concrete dam due to alkali-aggregate and thermal chemical reaction

  • Azizan, Nik Zainab Nik;Mandal, Angshuman;Majid, Taksiah A.;Maity, Damodar;Nazri, Fadzli Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.793-802
    • /
    • 2017
  • The damage of concrete due to the expansion of alkali-aggregate reaction (AAR) and thermal-chemical reactions affecting the strength of concrete is studied. The empirical equations for the variations of expansion of AAR, compressive strength and degradation of the modulus of elasticity with time, and compressive strength with degradation of the modulus of elasticity are proposed by analysing numerous experimental data. It is revealed that the expansion of AAR and compressive strength increase with time. The proposed combination of the time variations of chemical and mechanical parameters provides a satisfactory prediction of the concrete strength. Seismic analysis of the aged Koyna dam is conceded for two different long-term experimental data of concrete incorporating the proposed AAR based properties. The responses of aged Koyna dam reveal that the crest displacement of the Koyna dam significantly increases with time while the contour plots show that major principal stress at neck level reduces with time. As the modulus of elasticity decreases with ages the stress generated in the concrete structure get reduces. On the other hand with lesser value of modulus of elasticity the structure becomes more flexible and the crest displacement becomes very high that cause the seismic safety of the dam reduce.

Consolidation to Bulk Ceramic Bodies from Oyster Shell Powder (굴 패각 분말로부터 벌크 세라믹 구조체 제조)

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Min, Jae Hong
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2016
  • Waste oyster shells create several serious problems; however, only some parts of them are being utilized currently. The ideal solution would be to convert the waste shells into a product that is both environmentally beneficial and economically viable. An experimental study is carried out to investigate the recycling possibilities for oyster shell waste. Bulk ceramic bodies are produced from the oyster shell powder in three sequential processes. First, the shell powder is calcined to form calcium oxide CaO, which is then slaked by a slaking reaction with water to produce calcium hydroxide $Ca(OH)_2$. Then, calcium hydroxide powder is formed by uniaxial pressing. Finally, the calcium hydroxide compact is reconverted to calcium carbonate via a carbonation reaction with carbon dioxide released from the shell powder bed during firing at $550^{\circ}C$. The bulk body obtained from waste oyster shells could be utilized as a marine structural porous material.

Recent Advances in the Mechanistic Studies of Alkylaromatic Conversions over Zeolite Catalysts (제올라이트 촉매상에서의 알킬 방향족 화합물 전환 반응기구에 대한 최근 연구 동향)

  • Min, Hyung-Ki;Hong, Suk Bong
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • The transformation of alkylaromatic hydrocarbons using zeolite catalysts play big part in the current petrochemical industry. Here we review recent advances in the understanding of the reaction mechanisms of various alkylaromatic conversions with respect to the structural and physicochemical properties of zeolite catalysts employed. Indeed, the shape-selective nature of zeolite catalysts determines the type of reaction intermediates and hence the prevailing reaction mechanism together with the product distribution. The prospect of zeolite catalysis in the developement of more efficient petrochemical processes is also described.

Characteristics of the Surface Coating Layer of Ti5Si3 Intermetallic Compound Obtained by Shock Compaction and Reaction Synthesis Through Underwater Shock Compression (수중충격파를 이용하여 충격고화와 반응합성으로 제조된 Ti5Si3 금속간 화합물의 표면코팅 층의 특성에 관한 연구)

  • Lee, Sang-Hoon
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.101-106
    • /
    • 2008
  • The objective of the present study is to investigate the increase in the functional characteristics of a substrate by the formation of a thin coating layer. Thin coating layers of $Ti_5Si_3$ have high potential because $Ti_5Si_3$ exhibits high hardness. Shock induced reaction synthesis is an attractive fabrication technique to synthesize uniform coating layer by controlling the shock wave. Ti and Si powders to form $Ti_5Si_3$ using shock induced reaction synthesis, were mixed using high-energy ball mill into small scale. The positive effect of this technique is highly functional coating layer on the substrate due to ultra fine substructure, which improves the bonding strength. These materials are in great demand as heat resisting, structural and corrosion resistant materials. Thin $Ti_5Si_3$ coating layer was successfully recovered and showed high Vickers' hardness (Hv=1183). Characterization studies on microstructure revealed a fairly uniform distribution of powders with good interfacial integrity between the powders and the substrate.

Synthesis of Blue Emitting Materials for Organic Light Emitting Device (유기발광디바이스용 청색발광재료의 합성)

  • Chung, Pyung Jin;Cho, Min Ju
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.755-759
    • /
    • 2005
  • This study was based on organic electroluminescence display. Especially, DPAVBi, AVBi and DPVBi for the emitting materials were synthesized by Wittig, Wittig-Horner reaction. This reaction was conducted between phosphorous ylide and 4-(diphenylamino)benzaldehyde, 9-anthraldehyde and benzophenone. The structural property of reaction products were analyzed by FT-IR, $^1H-NMR$ spectroscopy and thermal stability, reactivity and PL property were analyzed by melting point, yield and emission spectrum, respectvely. The photoluminescence spectra of a pure DPAVBi, AVBi and DPVBi were observed at approximately 445nm, 484nm and 450nm, respectively. In this study, it was known that DPAVBi, AVBi, DPVBi had a different reaction properties according to stability of ${\alpha}$-position carbonyl group of the aldehyde, ketone.