DOI QR코드

DOI QR Code

Consolidation to Bulk Ceramic Bodies from Oyster Shell Powder

굴 패각 분말로부터 벌크 세라믹 구조체 제조

  • Cho, Kyeong-Sik (School of Advanced Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Hyun-Kwuon (School of Advanced Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Min, Jae Hong (School of Advanced Materials Science and Engineering, Kumoh National Institute of Technology)
  • 조경식 (금오공과대학교 신소재공학부) ;
  • 이현권 (금오공과대학교 신소재공학부) ;
  • 민재홍 (금오공과대학교 신소재공학부)
  • Received : 2016.02.24
  • Accepted : 2016.04.05
  • Published : 2016.06.28

Abstract

Waste oyster shells create several serious problems; however, only some parts of them are being utilized currently. The ideal solution would be to convert the waste shells into a product that is both environmentally beneficial and economically viable. An experimental study is carried out to investigate the recycling possibilities for oyster shell waste. Bulk ceramic bodies are produced from the oyster shell powder in three sequential processes. First, the shell powder is calcined to form calcium oxide CaO, which is then slaked by a slaking reaction with water to produce calcium hydroxide $Ca(OH)_2$. Then, calcium hydroxide powder is formed by uniaxial pressing. Finally, the calcium hydroxide compact is reconverted to calcium carbonate via a carbonation reaction with carbon dioxide released from the shell powder bed during firing at $550^{\circ}C$. The bulk body obtained from waste oyster shells could be utilized as a marine structural porous material.

Keywords

References

  1. D.-R. Chae: J. Fisheries Res. Manag., 1 (2011) 125 (Korean).
  2. S. K. Kim: Gyungnam Inst. Health and Environ., 4 (1996) 246 (Korean).
  3. H.-B. Kwon, C.-W. Lee, B.-S. Jun, J.-D. Yun, S.-Y. Weon and B. Koopman: Resour. Conserv. Recycl., 41 (2004) 75. https://doi.org/10.1016/j.resconrec.2003.08.005
  4. E.-I. Yang, S.-T. Yi and Y.-M. Leem: Cem. Concr. Res., 35 (2005) 2175. https://doi.org/10.1016/j.cemconres.2005.03.016
  5. W.-T. Kuo, H.-Y. Wang, C.-Y. Shu and D.-S. Su: Constr. Build. Mater., 46 (2013) 128. https://doi.org/10.1016/j.conbuildmat.2013.04.020
  6. M. R. R. Hamestera, P. S. Balzera and D. Beckerb: Mater. Res., 15 (2012) 204. https://doi.org/10.1590/S1516-14392012005000014
  7. C.-W. Lee, H.-P. Jeon and H.-B. Kwon: J. Korean Ceram. Soc., 47 (2010) 524 (Korean). https://doi.org/10.4191/KCERS.2010.47.6.524
  8. G. L. Yoon, O-S. Kwon, Y.-J. Lim and E.-I. Yang: J. Kor. Soc. Civil Eng., 21 (2001) 421 (Korean).
  9. G. L. Yoon, B. T. Kim, B. O. Kim and S. H. Han: Waste Manage., 23 (2003) 825. https://doi.org/10.1016/S0956-053X(02)00159-9
  10. B.-Y. Zhong, Q. Zhou, C.-F. Chan and Y. Yu: Chin. J. Struct. Chem., 31 (2012) 85.
  11. G. Kim: Korea Patent, KR 10-2001-0044817 (2003).
  12. N. Hasegawa, J. Higano, N. Inoue, Y. Fujioka, S. Kobayashi, H. Imai and M. Yamaguchi: J. Fisheries Technol., 5 (2012) 97.
  13. C. A. Michael and H. J. Lee: Korea. KR 10-2005-7013268 (2005).
  14. S.-Y. Yun, Y.-W. Kim and C.-S. Choi: Theor. Appl. Chem. Eng., 2 (1996) 1751 (Korean).
  15. J. H. Potgieter, S. S. Potgieter, S. J. Moja and A. Mulaba-Bafubiandi: Mineral. Eng., 15 (2002) 201. https://doi.org/10.1016/S0892-6875(02)00008-0
  16. A. G. Checa, F. J. Esteban-Delgado, J. Ramirez-Rico and A. B. Rodriguez-Navarro: J. Struct. Biol., 167 (2009) 261. https://doi.org/10.1016/j.jsb.2009.06.009
  17. S. W. Lee and C. S. Choi: Micron, 38 (2007) 58. https://doi.org/10.1016/j.micron.2006.03.018
  18. S-W. Lee, Y.-N. Jang, K.-W. Ryu, S.-C. Chae, Y.-H. Lee and C.-W. Jeon: Micron, 42 (2011) 60. https://doi.org/10.1016/j.micron.2010.08.001
  19. D. Ren, Q. Feng and X. Bourrat: Micron, 42 (2011) 228. https://doi.org/10.1016/j.micron.2010.09.005
  20. S. W. Lee, S. M. Hong and C. S. Choi: Theor. Appl. Chem. Eng., 8 (2002) 4597 (Korean).
  21. J.-H. Kim, S. E. Lee and C.-H. Lee: J. KORRA, 15 (2007) 143 (Korean).
  22. S. W. Lee, Y. M. Kim, R. H. Kim and C. S. Choi: Micron, 39 (2008) 380. https://doi.org/10.1016/j.micron.2007.03.006
  23. F. Wheaton: Aquacult. Eng., 37 (2007) 14. https://doi.org/10.1016/j.aquaeng.2006.11.002
  24. P. C. Okonkwo and S. S. Adefila: Afr. J. Pure Appl. Chem., 7 (2013) 280.
  25. W. Gallala, M. E. Gaied, A. Tlili and M. Montacer: Proc. Inst. Civ. Eng. Constr. Mater, 161 (2008) 25.
  26. J. Kemperl and J. Macek: Int. J. Miner. Process., 93 (2009) 84. https://doi.org/10.1016/j.minpro.2009.05.006
  27. D. Chen, X. Gao and D. Dollimore: Thermochim. Acta, 215 (1993) 65. https://doi.org/10.1016/0040-6031(93)80082-L
  28. K. Van Balen: Cem. Concr. Res., 35 (2005) 647. https://doi.org/10.1016/j.cemconres.2004.06.020
  29. V. Nikulshina, M. E. Galvez and A. Steinfeld: Chem. Eng. J., 129 (2007) 75. https://doi.org/10.1016/j.cej.2006.11.003
  30. D. Cazorla-Amorb, J. P. Joly, A. Linares-Solano, A. Marcilla-Gomis and C. Salinas-Martinez de Lecea: J. Phys. Chem., 95 (1991) 6611. https://doi.org/10.1021/j100170a043
  31. D. T. Beruto, F. Barberis and R. Botter: J. Cult. Heritage, 6 (2005) 253. https://doi.org/10.1016/j.culher.2005.06.003
  32. Y. Kobayashi, K. Sumi and E. Kato: J. Ceram. Soc. Jpn., 105 (1997) 670. https://doi.org/10.2109/jcersj.105.670
  33. K. Okada, N. Watanabe, K. V. Jha, Y. Kameshima, A. Yasumori and K. J. D. MacKenzie: Appl. Clay Sci., 23 (2003) 329. https://doi.org/10.1016/S0169-1317(03)00132-7
  34. B.-Y. Zhong, Q. Zhou, C.-F. Chan and Y. Yu: Chin. J. Struct. Chem., 31 (2012) 85.