Browse > Article
http://dx.doi.org/10.4150/KPMI.2008.15.2.101

Characteristics of the Surface Coating Layer of Ti5Si3 Intermetallic Compound Obtained by Shock Compaction and Reaction Synthesis Through Underwater Shock Compression  

Lee, Sang-Hoon (Nuclear Material Research Division, Korea Atomic Energy Research Institute)
Publication Information
Journal of Powder Materials / v.15, no.2, 2008 , pp. 101-106 More about this Journal
Abstract
The objective of the present study is to investigate the increase in the functional characteristics of a substrate by the formation of a thin coating layer. Thin coating layers of $Ti_5Si_3$ have high potential because $Ti_5Si_3$ exhibits high hardness. Shock induced reaction synthesis is an attractive fabrication technique to synthesize uniform coating layer by controlling the shock wave. Ti and Si powders to form $Ti_5Si_3$ using shock induced reaction synthesis, were mixed using high-energy ball mill into small scale. The positive effect of this technique is highly functional coating layer on the substrate due to ultra fine substructure, which improves the bonding strength. These materials are in great demand as heat resisting, structural and corrosion resistant materials. Thin $Ti_5Si_3$ coating layer was successfully recovered and showed high Vickers' hardness (Hv=1183). Characterization studies on microstructure revealed a fairly uniform distribution of powders with good interfacial integrity between the powders and the substrate.
Keywords
Underwater shock compression; Compaction and reaction synthesis$Ti_5Si_3$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. N. Thadhani, A. H. Mutz and T. Vreeland Jr: Acta Metall., 37 (1989) 897   DOI   ScienceOn
2 M. A. Meyers: Dynamic Behavior of Materials, Wiley, (1994)
3 K. Hokamoto, S. Tanaka, M. Fujita, T. Kodama and Y. Ujimoto: Scripta Mater., 39 (1998) 1383   DOI   ScienceOn
4 S.-H. Lee, K. Hokamoto, J. S. Lee and S.H. Khameneh Asl: Proc. ACHPR-2, Nara, Japan Nov.1-5, 2004, (2005). (Total 6 pages as CD-ROM)
5 S. A. Namjoshi and N. N. Thadhani: Scr. Mater., 40 (1999) 1347   DOI   ScienceOn
6 A. Mori, K. Hokamoto and M. Fujita: Mater. Sci. Forum, 465-465 (2004) 307
7 K. Hokamoto, Y. Ujimoto and M. Fujita: Mater. Trans., 45 (2004) 2897   DOI   ScienceOn
8 K. Hokamoto, T. Izuma and M. Fujita: Metall. Trans. A, 24A (1993) 2289
9 K. Hokamoto, S. Tanaka and M. Fujita: Int. J. Impact Eng., 24 (2000) 631   DOI   ScienceOn
10 L. H. Yu and M. A. Meyers: J. Mater. Sci., 26 (1991) 601   DOI
11 P. J. Counihan, A. Crawford and N. N. Thadhani: Mater. Sci. & Eng. A, 267 (1999) 26   DOI   ScienceOn
12 K. Hokamoto, J. S. Lee, M. Fujita, S. Itoh and K. Raghukandan: J. Mater. Sci., 37 (2002) 4073   DOI   ScienceOn
13 N. N. Thadhani, S. Namjoshi, P. J. Counihan and A. Crawford: Journal of Materials Processing Technology, 85 (1999) 74-78   DOI   ScienceOn
14 A. Chiba, M. Fujita, M. Nishida, K. Imamura and R. Tomoshige: Shock-Wave and High-Strain-Rate Phenomena in Materials, M. A. Meyers, L. E. Murr and K. P. Staudhammer(Ed.), Marcel Dekker, New York, (1992) 415
15 P. S. Decarli and J. C. Jamieson: Science, 133 (1961) 821   DOI   ScienceOn
16 M. A. Meyers and S. L. Wang: Acta Metall., 36 (1988) 925   DOI   ScienceOn