• Title/Summary/Keyword: structural performance test

Search Result 2,163, Processing Time 0.029 seconds

Characteristics of Friction Behavior of Ceramic Friction Materials according to Surface Materials

  • Ji-Hun Park;Jung-Woo Lee;Jong-Won Kwark;Woo-Jin Han;Oneil Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.535-541
    • /
    • 2023
  • Friction material, an integral constituent of bearing supports, facilitates frictional interactions between two components. Polytetrafluoroethylene (PTFE), a commonly employed friction material in bearing supports, has assessed resultant friction equilibrium. Nonetheless, protracted utilization diminishes frictional performance as the lubricating agent is progressively depleted. Friction materials can affect the entire structural system. Hence, this study applied ceramic material as a friction material due to its high strength, low friction, and low deformation. The frictional behavior was investigated using a cyclic friction test, considering various friction materials as the primary design variables and examining their covariance in cyclic frictional movements. The results substantiated that the ceramic friction material yielded a low variance and friction coefficients in cyclic frictional movements.

Shear Behavior of Prestressed Steel Fiber-Reinforced Concrete at Crack Interfaces (프리스트레스가 도입된 강섬유보강콘크리트의 균열면 전단거동)

  • Kal, Kyoung Wan;Hwang, Jin Ha;Lee, Deuck Hang;Kim, Kang Su;Choi, Il Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.78-88
    • /
    • 2012
  • Although structural concrete is well known for its good economic efficiency, it has limits of structural performance due to the low tensile strength, for which new structural members utilizing various concrete composite materials have been developed. Steel Fiber-Reinforced Concrete(SFRC) has great tensile strength, which is the one of the excellent composite material to complement the weakness of concrete, and it is also considered as a good alternative to prevent the explosive failure of high strength concrete under fire. Also, prestressed concrete members are of great advantages to long span structures and have greater shear strength compared to conventional reinforced concrete members. In this research, thus, a total of 22 direct shear test specimens were fabricated and tested to understand the shear behavior of Steel Fiber-Reinforced Prestressed Concrete(SFR-PSC) members, in which SFRC members combined with prestressing method. Based on the test results, the constitutive equations of shear behavior at crack interfaces were proposed, which provided good estimation on the shear behavior of the SFR-PSC direct shear test specimens.

Macroscopic High-Temperature Structural Analysis Model of Small-Scale PCHE Prototype (II) (소형 PCHE 시제품에 대한 거시적 고온 구조 해석 모델링 (II))

  • Song, Kee-Nam;Lee, Heong-Yeon;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1137-1143
    • /
    • 2011
  • The IHX (intermediate heat exchanger) of a VHTR (very high-temperature reactor) is a core component that transfers the high heat generated by the VHTR at $950^{\circ}C$ to a hydrogen production plant. Korea Atomic Energy Research Institute manufactured a small-scale prototype of a PCHE (printed circuit heat exchanger) that was being considered as a candidate for the IHX. In this study, as a part of high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the small-scale PCHE prototype under small-scale gas-loop test conditions. The modeling and analysis were performed as a precedent study prior to the performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE. Moreover, these results will be used in the design of a medium-scale PCHE prototype.

The Development of a 100 Mpa Class Ultra-high Strength Centrifugal Molded Square Beam Design and Manufacturing Technology (100MPa급 초고강도 원심성형 각형보의 설계 및 제작기술 개발 )

  • Doo-Sung Lee;Sung-Jin Kim;Jeong-Hoi Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.11-22
    • /
    • 2023
  • In this study, a structural concrete square beam was developed using the centrifugal molding technique. In order to secure the bending stiffness of the cross section, the hollow rate of the cross section was set to 10% or less. Instead of using the current poor mixture of concrete, a special formwork for producing a centrifugal square beam was manufactured, and a concrete mixing ratio with a high slump (150-200) and a design strength of 100 MPa or more was developed and applied. The produced centrifugally formed rectangular beams were subjected to performance tests according to the standard bending and shear test standards for centrifugally formed members. The static load test results for the four specimens exceeded both the nominal bending strength and nominal shear strength, which are design values through structural design, proving the structural reliability of the ultra-high-strength centrifugally formed square beam.

The Impact of Information Technology on Organizational Performance: The Mediating Effect of Organizational Learning

  • KHAN, Umair;ZHANG, Yongan;SALIK, Madiha
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.987-998
    • /
    • 2020
  • This study aims to examine OL as a potential mediating variable in the relationship between IT and organizational performance. Organizational learning (OL) has been proposed as the mechanism to accomplish this task. Existing empirical research demonstrates that OL may indeed act as a mediator for the effect of IT on organizational outcomes. Also, existing literature discusses the use of technology in the organization, and the case for OL as the key knowledge process, and the intersection between technology and OL as a knowledge-based means for improving organizational performance. Many studies use a descriptive measure of OL despite the theory suggesting that a normative measure may be more appropriate. This study aims to address these concerns in a setting by using structural equation modelling (SEM) to compare the effectiveness of descriptive and normative measures of OL as mediating variables in knowledge-intensive organizations. Survey results support OL as a mediator between IT and organizational performance in addition to normative measures of OL outperforming descriptive measures. Implications for research and practice are discussed. To test the model, we will apply (SEM) structural equation modeling in the analysis of a moment structures (AMOS) on the empirical evidence collected from 218 Pakistani CEOs and top managers.

VEHICLE DYNAMIC SIMULATION USING A NONLINEAR FINITE ELEMENT ANALYSIS CODE

  • Yu, Y.S.;Cho, K.Z.;Chyun, I.B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • The structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, Noise/Vibration/Harshness (NVH), crashworthiness, and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, the Virtual Proving Ground (VPG) approach has been developed to simulate dynamic nonlinear events as applied to automotive ride & handling. The finite element analysis technique provides a unique method to create and analyze vehicle system models, capable of including vehicle suspensions, powertrains, and body structures in a single simulation. Through the development of this methodology, event-based simulations of vehicle performance over a given three-dimensional road surface can be performed. To verify the predicted dynamic results, a single lane change test was performed. The predicted results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

The study for performance of isolators supported floating slab track (플로팅 슬래브궤도용 방진재의 성능에 관한 연구)

  • Kim, Jin-Ho;Cha, Hyo-Jung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.569-574
    • /
    • 2007
  • The paper presents an application of the model to a practical problem of train-induced vibrations. The aim of this study is to vertify for performance of isolators which was developed in KRRI supported floating slab track. Laboratory tests on developed isolations show that the energy dissipation, under cyclic loading of constant amplitude, can be suitably represented by a combination of a viscous and a hysteretic damping. Also, other tests for structural performance are carried out, such as elastic material test, compression test and so on. The specimen, $400{\times}400{\times}300mm$, is placed between two stiff steel plates designed to uniformly distribute the compression stress on the surface.

  • PDF

Introduction to the NREL Design Codes for System Performance Test of Wind Turbines - Part I : Preprocessor (풍력터빈 시스템 성능평가를 위한 NREL 프로그램군에 관한 소개 - 전처리기를 중심으로)

  • Bang, Je-Sung;Rim, Chae Whan;Chung, Tae Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.41.2-41.2
    • /
    • 2011
  • NREL NWTC Deside codes are analyzed and introduced to develop the system performance simulation program for wind turbine generator systems. In this paper, The AirfoilPrep generating the airfoil data, the IECWind generating hub-height wind data with extreme condition following IEC 61400-1, the TurbSim generating stochastic full-field turbulent wind data, the PreComp calculating structural and dynamic properties of composite blade and the BModes making mode shapes of blade and tower are explained respectively.

  • PDF

Structural Performance of Connection element composed of High Performance Fiber Reinforced Cementitious composites and Steel Bars in Brace (브레이스에서 고인성시멘트 복합체와 강봉으로 구성된 접합요소의 구조성능)

  • Lee Young Oh;Yang Il Seung;Han Byung Chan;Park Wan Shin;Yun Hyun Do;Moon Youn Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.231-234
    • /
    • 2005
  • Steel braced frames retrofit method has been broadly used due to their effectiveness in both light weight and construction periods. However, steel braced frames retrofit method has difficulties in application on the inner frames of buildings to be retrofitted consequently, there have been demands for the braced frames retrofit method that can be broadly and easily applicable to both inner and outer frames of the buildings. The objective of this study is to develop and evaluate the seismic retrofit method applicable to the inner frame also by dividing the reinforcing frames into three unit. From the cyclic test of specimens, the test results dearly showed that steel brace using HPFRCCs and steel bars ensure the better cyclic compressive performance than the normal braced members.

  • PDF

Recycling of In-site waste soil material to fill a hollow between PHC pile and Earthen wall

  • Jang, Myung-Houn;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.510-517
    • /
    • 2012
  • This study evaluated the recycling potential of in-site waste soil as pile back filling material (PBFM). We performed experiments to check workability, segregation resistance, bond strength, direct shear stress test, and dynamic load test using in-site waste soil in coastal areas. We found that PBFM showed better performance than general cement paste in terms of workability, segregation resistance, and bond strength. On the other hand, the structural performance of PBFM was slightly lower than that of general cement paste due to the skin friction force of pile by Pile Driving Analyzer and direct shear stress. However, because this type of performance degradation in terms of structure can be improved through the use of piles with larger diameter or by changing the type of pile, considering the economics and environment, we considered that recycling of PBFM has sufficient value.