• 제목/요약/키워드: structural optimal design

검색결과 1,129건 처리시간 0.028초

PROCEDURE FOR COMPUTER-AIDED PRELOAD SELECTION OF ENGINE CONNECTING-ROD BOLTS

  • Cho, S.S.;Chang, H.;Lee, K.W.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.319-325
    • /
    • 2007
  • Preload of critical engine bolts affects the performance and durability of engines. In modern engines that pursue higher power outputs and which are of lighter weight, it becomes more difficult to select an optimal target preload in consideration of various factors such as the role and structural characteristics of joint members, joint load, and fatigue durability of bolts and joint members. A procedure to select the bolt preload using computer-aided engineering technology, especially the finite element method, has been developed. The procedure is illustrated with connecting-rod bolts for which an appropriate preload is known. The selection criteria of target preload and the finite element modeling technique for connecting-rod bolts are also explained.

Rational designing of double-sided nail plate joints using the finite element method

  • Zhou, Tinozivashe;Guan, Z.W.
    • Structural Engineering and Mechanics
    • /
    • 제28권2호
    • /
    • pp.239-257
    • /
    • 2008
  • Double-sided punched metal plate timber fasteners present projections on both sides, which offer improved joint fire resistance and better joint aesthetics. In this paper, 3-D nonlinear finite element models were developed to simulate double-sided nail plate fastener timber joints. The models, incorporating orthotropic elasticity, Hill's yield criterion and elasto-plasticity and contact algorithms, are capable of simulating complex contact between the tooth and the timber and between the base plate and the timber in a fastener. Using validated models, parametric studies of the double-sided nail plate joints was undertaken to cover the tooth length and the tooth width. Optimal configuration was assumed to have been attained when increase in nail plate tooth width did not result in a raise in joint capacity, in conjunction with the optimum tooth length. This paper presents the first attempt to model and optimise tooth profile of double-sided nail plate fastener timber joints, which offers rational designs of such fasteners.

Reconstruction of structured models using incomplete measured data

  • Yu, Yan;Dong, Bo;Yu, Bo
    • Structural Engineering and Mechanics
    • /
    • 제62권3호
    • /
    • pp.303-310
    • /
    • 2017
  • The model updating problems, which are to find the optimal approximation to the discrete quadratic model obtained by the finite element method, are critically important to the vibration analysis. In this paper, the structured model updating problem is considered, where the coefficient matrices are required to be symmetric and positive semidefinite, represent the interconnectivity of elements in the physical configuration and minimize the dynamics equations, and furthermore, due to the physical feasibility, the physical parameters should be positive. To the best of our knowledge, the model updating problem involving all these constraints has not been proposed in the existed literature. In this paper, based on the semidefinite programming technique, we design a general-purpose numerical algorithm for solving the structured model updating problems with incomplete measured data and present some numerical results to demonstrate the effectiveness of our method.

Design of LQR controller for active suspension system of Partially Filled Tank Cars

  • Feizi, Mohammad Mahdi;Rezvani, Mohammad Ali
    • Structural Engineering and Mechanics
    • /
    • 제49권3호
    • /
    • pp.329-353
    • /
    • 2014
  • Increasing usage of tank cars and their intrinsic instability due to sloshing of contents have caused growing maintenance costs as well as more frequent hazards and defects like derailment and fatigue of bogies and axels. Therefore, varieties of passive solutions have been represented to improve dynamical parameters. In this task, assuming 22 degrees of freedom, dynamic analysis of partially filled tank car traveling on a curved track is investigated. In order to consider stochastic geometry of track; irregularities have been derived randomly by Mont Carlo method. More over the fluid tank model with 1 degree of freedom is also presented by equivalent mechanical approach in terms of pendulum. An active suspension system for described car is designed by using linear quadratic optimal control theory to decrease destructive effects of fluid sloshing. Eventually, the performance of the active suspension system has been compared with that of the passive one and a study is carried out on how active suspension may affect the dynamical parameters such as displacements and Nadal's derailment index.

입자군집 최적화에 기초한 최적 퍼지추론 시스템의 구조설계 (Structural Design of Optimized Fuzzy Inference System Based on Particle Swarm Optimization)

  • 김욱동;이동진;오성권
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.384-386
    • /
    • 2009
  • This paper introduces an effectively optimized Fuzzy model identification by means of complex and nonlinear system applying PSO algorithm. In other words, we use PSO(Particle Swarm Optimization) for identification of Fuzzy model structure and parameter. PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. This paper identifies the premise part parameters and the consequence structures that have many effects on Fuzzy system based on PSO. In the premise parts of the rules, we use triangular. Finally we evaluate the Fuzzy model that is widely used in the standard model of gas data and sew data.

  • PDF

Realization of Cilia Motion of Annelida by Distributed IPMC Actuators

  • Kwangmok Jung;Sungmoo Ryew;Kim, Hunmo;Nam, Jae-do;Jae wook Jeon;Park, Hyoukryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.103.3-103
    • /
    • 2001
  • Recently Electro active polymer has been discussed in various researches as new actuators replacing the human muscles. Since they have confronted a limitation of more advanced application with traditional actuator. IPMC (Ion exchange Polymer Metal Composite) is one of candidate materials for new actuators. In this paper, we propose a new approach and design principle for the IPMC polymer actuator to conquer the weaknesses of IPMC that is intrinsic weak structural stiffness and low trust forces. In the first we performs some experimental works about how the basic specific characteristics of IPMC vary and what the optimal operating conditions are. And we have applied IPMC as active cilium for realization of annelida motion like ...

  • PDF

고무차륜형 AGT 경량전철 차량용 알루미늄 차체의 개발 (Development on the Aluminum Carbody for Rubber-Tired AGT Vehicle)

  • 김연수;박성혁;백남욱;김동승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1118-1123
    • /
    • 2003
  • Based on the design requirements(size, strength, structure, weight, and etc.) for the rubber-tired AGT vehicle, carbody made of aluminum alloy is designed. The analysis of strength and stiffness is performed in the designed carbody, which results in the modification for optimal shapes and structures. It consists of a under frame, side frame, roof frame, end frame and forehead frame. After the carbody manufactured, tests are performed, which are vertical load test, longitudinal compressive load test, twisting load test, twisting natural frequency measurement, bending natural frequency measurement and 3 points supporting test. Results of them can guarantee a structural safety.

  • PDF

진화적 구조 최적화를 이용한 재료 혼합법의 개발 (Development of a Material Mixing Method using ESO)

  • 한석영;이수경;신민석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.259-264
    • /
    • 2003
  • This paper suggests a material mixing method to mix several materials in a structure. This method is based on ESO(Evolutionary Structural Optimization), which has been used to optimize topology of only one material structure. In this study, two criterions for material transformation and element removal are implemented for mixing several materials in a structure. Optimal topology for a multiple material structure can be obtained through repetitive application of the two criterions at each iteration. Two practical design examples of a short cantilever are presented to illustrate validity of the suggested material mixing method. It is found that the suggested method works very well and a multiple material structure has more stiffness than one material structure has under the same mass.

  • PDF

선반용 멀티사이즈 파워 척의 구조해석 (Structural Analysis of Multi-size Power Chuck for Lathes)

  • 김문기;유중학;윤영한;국정한;박종권
    • 한국생산제조학회지
    • /
    • 제8권3호
    • /
    • pp.107-113
    • /
    • 1999
  • The purpose of this study is to analyze multi-size power chuck which can chuck work pieces having various sizes automatically and be used suitably to an exclusive product line in the field of automotive industry. Gripping force, accuracy, and stiffness about the chuck are especially considered for the analysis. MSC/NASTRAN software is used for FEM analysis. Also, the effects of centrifugal force which occurs when chuck body rotates and compressive stresses which occur at contacting area in between chuck body and collet are estimated.

  • PDF

Vibration and Noise Control of Structural Systems Using Squeeze Mode ER Mounts

  • Jeong, Weui-Bong;Yoo, Wan-Suk;Jung, Woo-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1949-1960
    • /
    • 2003
  • This paper presents vibration and noise control of flexible structures using squeeze mode electro-rheological mounts. After verifying that the damping force of the ER mount can be controlled by the intensity of the electric fild, two different types of ER squeeze mounts have been devised. Firstly, a small size ER mount to support 3 kg is manufactured and applied to the frame structure to control the vibration. An optimal controller which consists of the velocity and the transmitted force feedback signals is designed and implemented to attenuate both the vibration and the transmitted forces. Secondly, a large size of ER mount to support 200 kg is devised and applied to the shell structure to reduce the radiated noise. Dynamic modeling and controller design are undertaken in order to evaluate noise control performance as well as isolation performance of the transmitted force. The radiated noise from the cylindrical shell is calculated by SYSNOISE using forces which are transmitted to the cylindrical shell through two-stage mounting system.