• 제목/요약/키워드: structural optimal design

검색결과 1,133건 처리시간 0.028초

고능률 방진 보링바 개발에 관한 연구 (A Study on the Development of High Efficiency Anti-Vibration Boring Bar)

  • 최춘규;이우영;최성주;이동주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.109-112
    • /
    • 1995
  • This paper analyzes high efficiency anti-vibration boring bars which increase stability against chatter vibration in boring operations. Structural analysis and mathematical modeling with considering dynamic properties for three types of existing boring bars are performed to search for optimal design parameters. The purpose of this paper is to find out design parameters for high efficiency anti-vibration boring bar.

  • PDF

전산 구조 공학의 발전과 연구 동향 (Advances and Trends in Computational Structural Engineering)

  • 최창근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1988년도 가을 학술발표회 논문집
    • /
    • pp.1-6
    • /
    • 1988
  • In this study, the current progress in computational structural engineering and research trends are discussed. The development of new finite elements, error analysis and adaptive mesh generation, material constitutive model, boundary element methods, structural optimal design, hardware/software, AI application and expert systems are particularly emphasized. The rapid development in computer technologies provides good environment for the technical advancement in computational structural engineering.

  • PDF

Empirical Initial Scantling Equations on Optimal Structural Design of Submarine Pressure Hull

  • Oh, Dohan;Koo, Bonguk
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권1호
    • /
    • pp.7-15
    • /
    • 2018
  • The submarine is an underwater weapon system which covertly attacks the enemy. Pressure hull of a submarine is a main system which has to have a capacity which can improve the survivability (e.g., protection of crews) from the high pressure and air pollution by a leakage of water, a fire caused by outside shock, explosion, and/or operational errors. In addition, pressure hull should keep the functional performance under the harsh environment. In this study, optimal design of submarine pressure hull is dealt with 7 case studies done by analytic method and then each result's adequacy is verified by numerical method such as Finite Element Analysis (FEA). For the structural analysis by FEM, material non-linearity and geometric non-linearity are considered. After FEA, the results by analytic method and numerical method are compared. Weight optimized pressure hull initial scantling methods are suggested such as a ratio with shell thickness, flange width, web height and/or relations with radius, yield strength and design pressure (DP). The suggested initial scantling formulae can reduce the pressure hull weight from 6% and 19%.

OPTIMAL RELIABILITY DESIGN FOR THIN-WALLED BEAM OF VEHICLE STRUCTURE CONSIDERING VIBRATION

  • Lee, S.B.;Baik, S.;Yim, H.J.
    • International Journal of Automotive Technology
    • /
    • 제4권3호
    • /
    • pp.135-140
    • /
    • 2003
  • In the deterministic optimization of a structural system, objective function, design constraints and design variables, are treated in a nonstatistical fashion. However, such deterministic engineering optimization tends to promote the structural system with lest reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. Therefore, a balance must be developed between the satisfactions of the design requirements and the objectives of reducing manufacturing cost. This paper proposes the reliability-based design optimization (RBDO) technique, which enables the optimum design that considers confidence level for the vibration characteristics of structural system. Response surface method (RSM) is utilized to approximate the performance functions describing the system characteristics in the RBDO procedure. The proposed optimization technique is applied to the pillar section design considering natural frequencies of a vehicle structure.

차량 차체 설계 (Automotive Body Design)

  • 이정익;김병곤;정태진
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.10-22
    • /
    • 2008
  • In an automotive body structure, a design configuration that fulfills structural requirements such as deflection, stiffness and strength is necessary for structural design and is composed of various components. The integrated design is used to obtain a minimum weight structure with optimal or feasible performance based on conflicting constraints and boundaries. The mechanical design must begin with the definition of one or more concepts for structure and specification requirements in a given application environment. Structural optimization is then introduced as an integral part of the product design and used to yield a superior design to the conventional linear one. Although finite element analysis has been firmly established and extensively used in the past, geometric and material nonlinear analyses have also received considerable attention over the past decades. Also, nonlinear analysis may be useful in the area of structural designs where instability phenomena can include critical design criteria such as plastic strain and residual deformation. This proposed approach can be used for complicated structural analysis for an integrated design process with the nonlinear feasible local flexibilities between system and subsystems.

구조물의 에너지를 고려한 LQR 및 ILQR제어기의 가중행렬 (Weighting Matrices of LQR and ILQR Controllers Considering Structural Energy)

  • 민경원;이영철;박민규
    • 한국지진공학회논문집
    • /
    • 제6권6호
    • /
    • pp.49-53
    • /
    • 2002
  • 가중행렬은 일반적인 최적 제어 설계에서 우선적으로 필요하지만 일반적으로 제어 설계자들 이 경험적 지식에 의존하고 있다. 이 논문은 구조물의 에너지를 고려한 최적제어기의 가중행렬을 결정하는 체계적인 절차를 제시하였다. 최적제어기는 LQR과 ILQR로 구분될 수 있다. 구조물의 총에너지를 고려한 Lyapunov 함수를 적용하고, 이로부터 유도된 식이 음수라는 상태를 이용하면 가중행렬을 어렵지 않게 구할 수 있다. 이러한 방법으로 산정된 가중행렬을 이용하여 LQR과 ILQR제어기를 설계하고 제어효율을 입증하였다.

유한요소법을 이용한 Tonpilz 트랜스듀서의 최적구조 설계 (Optimal Structural Design of a Tonpilz Transducer by Means of the Finite Element Method)

  • 강국진;노용래
    • 한국음향학회지
    • /
    • 제22권8호
    • /
    • pp.637-644
    • /
    • 2003
  • 본 연구에서는 대표적인 수중 음향 트랜스듀서인 Tonpilz 트랜스듀서에 대하여 설계변수들이 트랜스듀서 성능에 미치는 영향을 유한요소 해석을 통하여 파악하였다. 나아가 그 결과들의 통계적 다중 회귀분석을 통하여 응력 강화 (Stress stiffening) 효과를 고려한 공진 주파수, 대역폭 및 발생 음압을 이들 설계변수들의 함수로 도출한 후, 제한 최적화법인 SQP-PD 방법을 이용해 공진 주파수 30,000 Hz 와 -3dB 대역폭 10% 이상을 가지며 최대 음압을 구현할 수 있는 트랜스듀서의 최적구조를 결정하였다. 또한 SQP-PD 방법에 의한 최적값을 유한요소 해석에 의한 값과 비교함으로써 최적값의 타당성을 검증하였고, 본 연구에서 제시한 설계법이 계산시간의 단축과 높은 정확성을 가짐을 확인하였다.

2차원 가새골조의 최적내진설계를 위한 MSA 알고리즘 (Modified Simulated Annealing Algorithms for Optimal Seismic Design of Braced Frame Struvtures)

  • 이상관;성창원;박효선
    • 한국강구조학회 논문집
    • /
    • 제12권6호
    • /
    • pp.629-638
    • /
    • 2000
  • 알고리즘의 용이성과 전역적 최적해로의 수렴가능성 등의 이점을 가진 SA알고리즘은 구조최적화문제에 활발하게 적용되고 있으나 냉각스케줄의 설정, 모호한 종료기준, 과도한 반복해석 등의 문제점을 가지고 있다. 그러므로 본 논문에서는 기존 SA알고리즘의 단점을 보완한 MSA 알고리즘을 개발하고자한다. MSA 알고리즘은 수렴에 요구되는 반복수를 감소시키고 국부최소점이 많은 동적최적화문제의 초기설계 선택의 자율성을 확보하기 위하여 SQ 및 SA의 2단계로 구성하여 개발하였다. 또한 기존 연구에서 제안된 냉각 스케줄에 의한 수렴성 등을 비교분석하여 구조최적화에 적합한 냉각스케줄을 제안하여 그 성능을 평면가새골조 구조물의 최적내진설계에 적용하여 분석하였다.

  • PDF

철도 차량 전두부 충돌 피해 저감을 위한 Protective shell frame의 위상 최적화에 관한 연구 (The study on Topology Optimization for Crashworthiness enhancement in Protective shell frame of Rolling Stock leading-cab)

  • 김현준;김세훈;정현승;권태수;서명원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.138-143
    • /
    • 2007
  • The leading-cab (high energy absorption area) of rolling stock directly is impacted on the frontal crash unlike other cabs. Thus, leading-cab has a structurally complex shape to solve getting concentrated loads. However, in order to enhance structural performance and to achieve the weight reduction of cab, changing the sizes and adjusting the distance of members do not take an effective result. Therefore, in design phase, to find the material arrangement which helps structural capacity be better should be done. This research applies the topology optimization to concept design of protective shell frame on strategy of crush energy absorption with considering pressure and vertical loads acting on the principal part of leading-cab. In this research, topology optimization method focuses on structural design, and which yields optimal material arrangement under given loads and boundary conditions using density method which has the density of material as design variables. Finally, this research presents optimal material arrangement and structure of protective shell frame on given loads with applying topology optimization.

  • PDF

Seismic performance and optimal design of framed underground structures with lead-rubber bearings

  • Chen, Zhi-Yi;Zhao, Hu;Lou, Meng-Lin
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.259-276
    • /
    • 2016
  • Lead-rubber bearings (LRBs) have been used worldwide in seismic design of buildings and bridges owing to their stable mechanical properties and good isolation effect. We have investigated the effectiveness of LRBs in framed underground structures on controlling structural seismic responses. Nonlinear dynamic time history analyses were carried out on the well-documented Daikai Station, which collapsed during the 1995 Hyogoken-Nanbu earthquake. Influences of strength ratio (ratio of yield strength of LRBs to yield strength of central column) and shear modulus of rubber on structural seismic responses were studied. As a displacement-based passive energy dissipation device, LRBs reduce dynamic internal forces of framed underground structures and improve their seismic performance. An optimal range of strength ratios was proposed for the case presented. Within this range, LRBs can dissipate maximum input earthquake energy. The maximum shear and moment of the central column can achieve more than 50% reduction, whereas the maximum shear displacement of LRBs is acceptable.