• Title/Summary/Keyword: structural optimal design

Search Result 1,129, Processing Time 0.027 seconds

The Strengthening Effects of Concrete Columns Confined with Carbon Fiber Sheets along the Fiber Direction (탄소섬유쉬트 올방향에 따른 콘크리트 기둥 보강성능)

  • Kim, Yang-Jung;Hong, Gap-Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.326-332
    • /
    • 2011
  • Carbon, Aramid, Boron and Glass fibers are used as fibrous materials to promote structural bearing strength. Of these fiber types, carbon fiber is the most commonly used material, and is characterized by having a one-way direction, which is strengthened by tensile strength due to the attached direction only, while other types of fibers are two-way. Therefore, when applied in the field, the attachment direction of fiber is a very important factor. However, when fiber direction is not mentioned in the design drawing, there sometimes is no improvement in structural strength, as the fiber is being installed by a site engineer or workers who lack structural knowledge. The purpose of this study was to propose an optimal direction of carbon fiber through a comparison & analysis of reinforcing efficiency with reinforced experimental columns that used carbon fibers in each of the inclined, horizontal and vertical directions. According to the results, horizontal direction in the reinforced column was improved by 153.43%, but vertical direction was 104.61% only, and it was understood this was due to increased tensile strength along the fiber direction. For this reason, it is necessary to include information regarding fiber direction in design and site management.

Dynamic Personal Knowledge Network Design based on Correlated Connection Structure (결합 연결구조 기반의 동적 개인 지식네트워크 설계)

  • Shim, JeongYon
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.6
    • /
    • pp.71-79
    • /
    • 2015
  • In a new era of Cloud and Big data, how to search the useful data from dynamic huge data pool in a right time and right way is most important at the stage where the information is getting more important. Above all, in the era of s Big Data it is required to design the advanced efficient intelligent Knowledge system which can process the dynamic variable big data. Accordingly in this paper we propose Dynamic personal Knowledge Network as one of the advanced Intelligent system approach. Adopting the human brain function and its neuro dynamics, an Intelligent system which has a structural flexibility was designed. For Structure-Function association, a personal Knowledge Network is made to be structured and to have reorganizing function as connecting the common nodes. We also design this system to have a reasoning process in the extracted optimal paths from the Knowledge Network.

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.

Active control of a nonlinear and hysteretic building structure with time delay

  • Liu, Kun;Chen, Long-Xiang;Cai, Guo-Ping
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.431-451
    • /
    • 2011
  • Time delay inevitably exists in active control systems, and it may cause the degradation of control efficiency or instability of the systems. So time delay needs to be compensated in control design in order to eliminate its negative effect on control efficiency. Today time delay in linear systems has been more studied and some treating methods had been worked out. However, there are few treating methods for time delay in nonlinear systems. In this paper, an active controller for a nonlinear and hysteretic building structure with time delay is studied. The nonlinear and hysteretic behavior of the system is illustrated by the Bouc-Wen model. By specific transformation and augmentation of state parameters, the motion equation of the system with explicit time delay is transformed into the standard state space representation without any explicit time delay. Then the fourth-order Runge-Kutta method and instantaneous optimal control method are applied to the controller design with time delay. Finally, numerical simulations and comparisons of an eight-story building using the proposed time-delay controller are carried out. Simulation results indicate that the control performance will deteriorate if time delay is not taken into account in the control design. The simulations also prove the proposed time delay controller in this paper can not only effectively compensate time delay to get better control effectiveness, but also work well with both small and large time delay problems.

Thermomechanical Analysis of Functionally Gradient $Al-SiC_p$ Composite for Electronic Packaging (전자패키지용 경사조성 $Al-SiC_p$복합재료의 열.기계적 변형특성 해석)

  • 송대현;최낙봉;김애정;조경목;박익민
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.23-29
    • /
    • 2000
  • The internal residual stresses within the multilayered structure with sharp interface induced by the difference in thermal expansion coefficient between the materials of adjacent layers often provide the source of failure such as delamination of interfaces etc. Recent development of the multilayered structure with functionally graded interface would be the solution to prevent this kind of failure. However a systematic thermo-mechanical analysis is needed for the customized structural design of multilayered structure. In this study, theoretical model for the thermo-mechanical analysis is developed for multilayered structures of the $Al-SiC_p$ functionally graded composite for electronic packaging. The evolution of curvature and internal stresses in response to temperature variations is presented for the different combinations of geometry. The resultant analytical solutions are used for the optimal design of the multilayered structures with functionally graded interface as well as with sharp interface.

  • PDF

Optimization Analysis of Driving Gear of Large Capacity Non-contact Mixer for MLCC Electronic Materials (MLCC 전자재료용 대용량 비접촉식 교반기 구동기어의 형상최적화 구조해석)

  • Choi, Byungju;Yang, Youngjoon
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.51-58
    • /
    • 2016
  • MLCC is key parts of many electronic products and mixer is used to make MLCC. Currently, non-contact mixer is increasingly used due to its many merits. In case of large capacity non-contact mixer, function of driving gear is important. In this study, therefore, in order to reduce manufacturing cost through optimal design of driving gear of large capacity non-contact mixer, study on shape optimization of driving gear without excessive design modification was performed. As the results, because safety factors of modification model were decreased about 3.0 ~ 3.5 times compared with those of model with robust design, the possibility for saving manufacturing cost was confirmed.

A Study on the Stress Distribution and Stress Concentration of Pipe with Respect to Attached Shape and Method of the Bracket in a Welding Structure (브래킷 결합형식에 따른 용접 구조물의 파이프에서 발생하는 응력분포와 응력집중에 관한 연구)

  • Jeon, Hyung-Yong;Sung, Rak-Won;Han , Geun-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.28-37
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method and test for considering stress distribution and stress concentration to be generated according to the change of attached shape and method of the bracket to pipe in welding structure. Generally, members that consist structures are subjected to various forces and are jointed each other with a number of bracket. In this case, circular pipe was adapted in order to weld these members easily and to study the optimal design which is used a beam with shape section as main components of the structure, According to attached shape and method, distributed stress on circular pipe is appeared so differently. This may result deeply effects with respect to thickness, material properties. So a study on attaching shape and method of bracket to circular pipe is needed. In this paper, to obtain the maximum equivalent stress or stress concentration was used experimental and F.E.M. analysis. First five parameter was defined with respect to attached a shape and method to circular pipe i.e. the variation of the attached area, the variation of the attached shape, the variation of the attached length, the variation of both directin angles, the variation of the upper angle. Afterward the experimental analysis was practiced as the variation of the both direction angel and the finite element analysis was practiced as each parameters. We can discover stress distribution and stress concentration according to the change of form of bracket. And the result can be referenced for a design of similar structure.

  • PDF

Buckling analysis and optimal structural design of supercavitating vehicles using finite element technology

  • Byun, Wan-Il;Kim, Min-Ki;Park, Kook-Jin;Kim, Seung-Jo;Chung, Min-Ho;Cho, Jin-Yeon;Park, Sung-Han
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.274-285
    • /
    • 2011
  • The supercavitating vehicle is an underwater vehicle that is surrounded almost completely by a supercavity to reduce hydrodynamic drag substantially. Since the cruise speed of the vehicle is much higher than that of conventional submarines, the drag force is huge and a buckling may occur. The buckling phenomenon is analyzed in this study through static and dynamic approaches. Critical buckling load and pressure as well as buckling mode shapes are calculated using static buckling analysis and a stability map is obtained from dynamic buckling analysis. When the finite element method (FEM) is used for the buckling analysis, the solver requires a linear static solver and an eigenvalue solver. In this study, these two solvers are integrated and a consolidated buckling analysis module is constructed. Furthermore, Particle Swarm Optimization (PSO) algorithm is combined in the buckling analysis module to perform a design optimization computation of a simplified supercavitating vehicle. The simplified configuration includes cylindrical shell structure with three stiffeners. The target for the design optimization process is to minimize total weight while maintaining the given structure buckling-free.

Design of flexure hinge to reduce lateral force of laser assisted thermo-compression bonding system (레이저 열-압착 본딩 시스템의 Lateral Force 감소를 위한 유연 힌지의 설계)

  • Lee, Dong-Won;Ha, Seok-Jae;Park, Jeong-Yeon;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.23-30
    • /
    • 2020
  • Laser Assisted Thermo-Compression Bonding (LATCB) has been proposed to improve the "chip tilt due to the difference in solder bump height" that occurs during the conventional semiconductor chip bonding process. The bonding module of the LATCB system has used a piezoelectric actuator to control the inclination of the compression jig on a micro scale, and the piezoelectric actuator has been directly coupled to the compression jig to minimize the assembly tolerance of the compression jig. However, this structure generates a lateral force in the piezoelectric actuator when the compression jig is tilted, and the stacked piezoelectric element vulnerable to the lateral force has a risk of failure. In this paper, the optimal design of the flexure hinge was performed to minimize the lateral force generated in the piezoelectric actuator when the compression jig is tilted by using the displacement difference of the piezoelectric actuator in the bonding module for LATCB. The design variables of the flexure hinge were defined as the hinge height, the minimum diameter, and the notch radius. And the effect of the change of each variable on the stress generated in the flexible hinge and the lateral force acting on the piezoelectric actuator was analyzed. Also, optimization was carried out using commercial structural analysis software. As a result, when the displacement difference between the piezoelectric actuators is the maximum (90um), the maximum stress generated in the flexible hinge is 11.5% of the elastic limit of the hinge material, and the lateral force acting on the piezoelectric actuator is less than 1N.

A Lightweight Design of the Spar cap of Wind Turbine Blades with Carbon Fiber Composite and Ply Reduction Ratio (탄소섬유 복합재 및 두께 축소율을 이용한 풍력 블레이드 스파캡 경량화 설계)

  • Kim, Do-Won;Jeong, Gyu;Lim, Jae Hyuk;Lim, Jun-Woo;Yu, Byeong-Min;Lee, Kil-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.66-75
    • /
    • 2018
  • In this paper, a lightweight design of the spar cap of 2MW wind turbine blade was carried out using the ply reduction ratio (PRR) and CFRP with a trade-off study. The spar cap is one of the most critical factor in determining the mechanical performance of the blade. Tsai-Wu and Puck fracture theory were used to determine the fracture. As a result, the CFRP composite material could be lighter in terms of weight by about 30% than GFRP composite material under the same conditions. Based on the analytical results, we derive the optimal value of the laminate thickness of the composite material and present the structural performance improvement and the lightweight design result.