• 제목/요약/키워드: structural methodology

검색결과 1,736건 처리시간 0.046초

MDO기법에 의한 새로운 구조해석 및 설계기법 고찰: 플랩 구동장치의 구조설계에의 적용 (A Study on the New Method for Structural Analysis and Design by MDO(Multidisciplinary Design Optimization) Methodology : Application to Structural Design of Flap Drive System)

  • 권영주;방혜철
    • 한국CDE학회논문집
    • /
    • 제5권2호
    • /
    • pp.184-195
    • /
    • 2000
  • MDO (Multidisciplinary Design Optimization) methodology is an emerging new technology to solve a complicate structural analysis and design problem with a large number of design variables and constraints. In this paper MDO methodology is adopted through the use of computer aided systems such as Geometric Solid Modeller, Mesh Generator, CAD system and CAE system. And this paper introduces MDO methodology as a new method for structural analysis and design through the application to the structural design of flap drive system. In a MDO methodology application to the structural design of flap drive system, kinetodynamic analysis is done using a simple aerodynamic analysis model for the air flow over the flap surface instead of difficult aerodynamic analysis. Simultaneously the structural static analysis is done to obtain the optimum structural condition. And the structural buckling analysis for push pull rod is also done to confirm the optimum structural condition (optimum cross section shape of push pull rod).

  • PDF

원자로용 수중탐상기의 구조해석 (Structural Analysis of RIROB(Reactor Inspection Robot))

  • 최석호;권영주;김재희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.613-616
    • /
    • 1997
  • MDO(Multidisciplinary Design Optimization) methodology is an emerging new technology to solve a complicate structural analysis and design problem with a number of design variables and constraints. In this paper MDO methodology is adopted through the use of computer aided engineering(CAE) system. And this paper treats the structural design problem of RIROB(Reactor Inspection Robot) through the application of MDO methodology. In a MDO methodology application to the structural design of RIBOS, kinetodynamic analysis is done using a simple fluiddynamic analysis model for the warter flow over the sensor support surface instead of difficult fluid dynamic analysis. Simultaneously the structural static analysis is done to obtain the optimum structural condition. The minimum thickness (0.8cm) of the RIROB housing is obtained for the safe design of RIROB. The kinetodynamic analysis of RIROB. The kinetodynamic analysis of RIROB is done using ADAMS and the static structural analysis of RIROB is done using NISA.

  • PDF

지진취약도 함수 개선을 위한 철근콘크리트 건물의 구조 유형 분류 방안 (A Classification Methodology of Structural Types of RC Buildings for Improving Seismic Fragility Functions)

  • 김태완
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.285-292
    • /
    • 2020
  • The methodology classifying structural types of concrete buildings in the existing seismic fragility functions is too simple to estimate the fragility of existing residential buildings and neighborhood living facilities, especially those below five stories. Their structural types are dependent on information contained in the building register such as main use, total floor area, story, permission date, and first story floor area of the individual building. All of this information is not considered for classifying types in the existing functions; therefore, the goal of this study was to suggest a methodology that classifies structural types of concrete buildings by utilizing such information. The results of this study showed that the suggested methodology can classify structural types better than the existing methodology. Nevertheless, there is still a need to simplify the methodology because fragility estimation demands quickness rather than accuracy.

Evaluation of seismic performance factors for steel DIAGRID structural system design

  • Lee, Dongkyu;Shin, Soomi;Ju, Youngkyu
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.735-755
    • /
    • 2016
  • This article presents a proposed analytical methodology to determine seismic force-resisting system R-values for steel diagrid framed systems. As current model building codes do not explicitly address the seismic design performance factors for this new and emerging structural system, the purpose of this study is to provide a sound and reliable basis for defining such seismic design parameters. An approach and methodology for the reliable determination of seismic performance factors for use in the design of steel diagrid framed structural systems is proposed. The recommended methodology is based on current state-of-the-art and state-of-the practice methods including structural nonlinear dynamic analysis techniques, testing data requirements, building code design procedures and earthquake ground motion characterization. In determining appropriate seismic performance factors (R, ${\Omega}_O$, $C_d$) for new archetypical building structural systems, the methodology defines acceptably low values of probability against collapse under maximum considered earthquake ground shaking.

구조적 방법론과 정보공학 방법론을 통합하는 프로그램 개발 과정 가이드와 사례 (Program Development Process Guide and Examples that Integrate Structural and Information Engineering Methodologies)

  • 조민호
    • 한국전자통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.403-408
    • /
    • 2024
  • 소프트웨어의 개발 방법은 환경의 변화에 따라 계속해서 발전되었다. 구조적 방법론, 정보공학 방법론 그리고 객체지향 방법론이 이런 변화의 큰 흐름이다. 각 방법론은 특징과 장점이 있고, 적용되는 분야가 다르다. 실무를 수행하는 엔지니어들은 각 방법론을 적용하는 것은 익숙하지만, 구조적 방법론이나 정보공학 방법론을 통합하여 적용하는 것에 익숙하지 않다. 그래서 방법론이 가지는 효과를 최대한 얻을 수 없다. 이런 점에 착안하여 각 방법론의 적용 대상에 대해 구조적 방법론, 정보공학 방법론을 통합하여 적용하는 방법에 대한 것을 정리하고 사례를 제시하고자 한다.

APR1400 원자로내부구조물 종합진동평가프로그램 진동 및 응력해석 방법론 검증 (Validation of Vibration and Stress Analysis Methodology for APR1400 Reactor Vessel Internals Comprehensive Vibration Assessment Program)

  • 김규형;고도영;김성환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.300-305
    • /
    • 2012
  • The vibration and stress analysis program of comprehensive vibration assessment program (CVAP) is to verify theoretically the structural integrity of reactor vessel internals (RVI) and to provide the basis for selecting the locations monitored in measurement and inspection programs. This paper covers the verification of the vibration and stress analysis methodology of APR1400 RVI CVAP. The analysis methodology was developed to use 3-dimensional hydraulic and structural models with ANSYS and CFX. To validate the methodology, the hydraulic loads and structural reponses of OPR1000 were predicted and compared with the calculated and measured data in the OPR1000 RVI CVAP. Since the results predicted with this methodology were close to the measured values considerably, it was confirmed that the analysis methodology was developed properly.

  • PDF

구조해석에서 객체지향 방법론의 도입 (Application of Object-Oriented Methodology for Structural Analysis and Design)

  • 이주영;김홍국;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.160-169
    • /
    • 1995
  • This study presents an application of object-oriented methodology for structural dcsign process. A prototype system of integrated a structural design system is developed by introducing a structural analysis object model(SAOM) and structural design object model(SDOM). The SAOM module. which is modeled as a part of structural member, performs structural analysis using FEM approach and the SDOM module checks structural members based on Korea steel design standard. Above mentionedmodelsareabstraclencapsulatibleandreusable.

  • PDF

기계식 인공심장판막의 경량화 설계를 위한 구조해석 (Structural Analysis for Thickness Minimization Design of a Bileaflet Mechanical Heart)

  • 권영주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.643-646
    • /
    • 2001
  • This paper investigates the structural analysis and design of mechanical heart valve through the numerical analysis methodology. In a numerical analysis methodology application to the thickness minimization structural design of mechanical heart valve, structural analysis is performed for the blood flow through a bileaflet mechanical heart valve. The structural static analysis is carried out to confirm the thickness minimization structural condition (minimum thickness shape of leaflet).

  • PDF

A partial factors methodology for structural safety assessment in non-linear analysis

  • Castro, Paula M.R.P.;Delgado, Raimundo M.;Cesar de Sa, Jose M.A.
    • Computers and Concrete
    • /
    • 제2권1호
    • /
    • pp.31-53
    • /
    • 2005
  • In the present structural codes the safety verification is based on a linear analysis of the structure and the satisfaction of ultimate and serviceability limit states, using a semi-probabilistic security format through the consideration of partial safety factors, which affect the action values and the characteristic values of the material properties. In this context, if a non-linear structural analysis is wanted a difficulty arises, because the global safety coefficient, which could be obtained in a straightforward way from the non-linear analysis, is not directly relatable to the different safety coefficient values usually used for the different materials, as is the case for reinforced concrete structures. The work here presented aims to overcome this difficulty by proposing a methodology that generalises the format of safety verification based on partial safety factors, well established in structural codes within the scope of linear analysis, for cases where non-linear analysis is needed. The methodology preserves the principal assumptions made in the codes as well as a reasonable simplicity in its use, including a realistic definition of the material properties and the structural behaviour, and it is based on the evaluation of a global safety coefficient. Some examples are presented aiming to clarify and synthesise all the options that were taken in the application of the proposed methodology, namely how to transpose the force distributions obtained with a non-linear analysis into design force distributions. One of the most important features of the proposed methodology, the ability for comparing the simplified procedures for second order effects evaluation prescribed in the structural codes, is also presented in a simple and systematic way. The potential of the methodology for the development and assessment of alternative and more accurate procedures to those already established in codes of practice, where non-linear effects must be considered, is also indicated.

A methodology for development of seismic fragility curves for URBM buildings

  • Balasubramanian, S.R.;Balaji, Rao K.;Meher, Prasad A.;Rupen, Goswami;Anoop, M.B.
    • Earthquakes and Structures
    • /
    • 제6권6호
    • /
    • pp.611-625
    • /
    • 2014
  • This paper presents a simple methodology that integrates an improved storey shear modelling, Incremental Dynamic Analysis and Monte Carlo Simulation in order to carryout vulnerability analysis towards development of fragility curves for Unreinforced Brick Masonry buildings. The methodology is demonstrated by developing fragility curves of a single storey Unreinforced Brick Masonry building for which results of experiment under lateral load is available in the literature. In the study presented, both uncertainties in mechanical properties of masonry and uncertainties in the characteristics of earthquake ground motion are included. The research significance of the methodology proposed is that, it accommodates a new method of damage grade classification which is based on 'structural performance characteristics' instead of 'fixed limiting values'. The usefulness of such definition is discussed as against the existing practice.