• Title/Summary/Keyword: structural members

Search Result 2,411, Processing Time 0.029 seconds

A Study on the Shape Analysis of Cable-Dome Structures (케이블-돔 복합구조의 형상해석에 관한 연구)

  • 권택진;한상을;최옥훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.93-100
    • /
    • 1998
  • The basic systems of spatial structures such as shells, membrane, cable-nets and tensegrity structure have been developed to create the large spaces without column. These structures may have large freedom in scale and form, and especially tensegrity structures are received much attention from the view points of their light weight and aesthetics. But There re some difficulties concerning structural stability, surface formation and construction method. One of the way to solve these problems reasonably is a combination of tensile members and rigid members. A structural system based on this concept is referred to as the "HTS ( Hybrid Tension Structure )". This is a type of flexible structural system which is unstable initially, because the cable material has little initial rigidity. As cable - dome hybrid structures is a type of HTS, the initial stress for the self- equilibrated system having stable state have to be introduced. To determine initial stress having stable state, the shape finding analysis is required before the stress - deformation analysis. In this paper, the primary objective is to derive the nonlinear finite element formula of cable and truss members considering geometric nonlinearity for shape finding of cable-dome, and to propose the method to decide the initial stress by the shape analysis of cable-dome hybrid structure with the self-equilibrated state.

  • PDF

A study on the dimension unit of framework on Yingzaofashi - Confrontation between Chi(尺) hypothesis and Fen(分°) hypothesis - (송 『영조법식』의 건축계획 치수 단위에 대한 이론적 고찰 - 자(尺) 단위 계획설과 분(分°) 단위 계획설 간의 논쟁을 중심으로 -)

  • Baik, So-Hun
    • Journal of architectural history
    • /
    • v.31 no.3
    • /
    • pp.7-16
    • /
    • 2022
  • Fen(分°) is the proportional dimension unit of the standard timber section on Yingzaofashi(營造法式), and there is a phrase that not only structural members but the whole structural design of a building also use Fen as the dimension unit on the book. But in fact only the section dimensions of structural members are recorded by Fen, but the design dimensions are recorded by Chi(尺) on the book. Other historical records also described the building size by Chi. So there has been long-standing debate on the phase in Chinese architectural history society, including the recent confrontation on the analysis of survey figures of the east great hall of Foguangsi temple(佛光寺 東大殿). This paper analyzes all the records about the size of structural members and section planning on the book to make various calculation and evaluation. And it makes a survey of Cai(材) as the dimension and design unit between Chi and Fen through geometric analysis. Cai might be a rough unit of measurement in terms of structural and proportional scheming on Yingzaofashi, and the full size Cai(足材) had been a building scheming module before the Song dynasty.

Estimation of Dynamic Parameters and Concrete Strength of a Structural Member by Impact Hammer Testing (임팩트해머 실험에 의한 부재의 동적파라미터 및 콘크리트 강도 추정)

  • Sehee Kim;Junghyun Kyung;Heechang Eun
    • Land and Housing Review
    • /
    • v.15 no.3
    • /
    • pp.153-164
    • /
    • 2024
  • Structural health monitoring involves performance evaluation based on measurements for maintenance purposes. By back-calculating measured Frequency Response Function (FRF) data, the concept of effective mass was introduced and applied to the performance evaluation of structural members. An identification method was proposed that uses participation factors to estimate the dynamic parameters and the strength of concrete of structural members. The appropriateness of these methods for identifying dynamic parameters and concrete strength of structural members was validated through experimental results, proving their utility in non-destructive testing for concrete strength.

A Basic Structural Design for large Floating Crane (대형 해상크레인의 구조 기본 설계)

  • PARK CHAN-HU;KIM BYUNG-WOO;HA MUN-KEUN;CHUN MIN-SUNG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.42-47
    • /
    • 2004
  • This paper describes basic structural design for the large floating crane barge of fixed undulation type. Structural analysis is performed to divide two parts because crane barge is composed two parts, crane part of jib boom back stay and back tower and barge part to support crane part. The structural strength for jib boom structure members are in compliance with JIS B 8821 and scantling of all barge structural members are in compliance with the requirement of KR (Korean Register of Shipping) Steel Barges and Rules for Classification of Steel Ships. For the structural analysis of large floating crane, MSC/NASTRAN & MSC/PATRAN software is used.

  • PDF

Assessment of Structural Performance for a Lightweight Soundproof Tunnel Composed of Partitioned Pipe Truss Members (격벽화된 파이프 트러스 요소로 구성된 경량방음터널의 구조적 성능 평가)

  • Noh, Myung-Hyun;Ahn, Dong-Wook;Joo, Hyung-Joong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, the full-size structural performance test for a lightweight soundproof tunnel composed of partitioned pipe truss members is carried out to investigate the structural performance. In addition, a nonlinear structural analysis of the same finite element model as the full-size testing model is performed to compare the test result. The test and analysis results showed that the lightweight soundproof tunnel ensures the structural safety against wind loads, snow loads and load combinations. As a result, the full-size test and analysis results meet all the design load conditions, hence the proposed lightweight soundproof tunnel is ready for the field application.

Reliability-Based Structural Optimization of Transmission Tower (신뢰성에 기초한 철탑구조물의 최적화에 관한 연구)

  • 김성호;김상효;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.135-140
    • /
    • 1993
  • The optimum weight design of structure is to determine the combination of structural members which minimize the weight of structures and satisfy design conditions as well. Since most of loads and design variables considered in structural design have uncertain natures, the reliability-based optimization techniques need to be developed. The aim of this study is to estabilish the general algorithm for the minimum weight design of transmission tower structure system with reliability constraints. The sequential linear programming method is used to solve non-linear minimization problems, which converts original non-linear programming problems to sequential linear programming problems. The optimal solutions are produced for various reliability levels such as reliability levels inherent in current standard transmission tower cross-section and optimal transmission tower cross-section obtained with constraints of current design criteria as well as selected target reliability index. The optimal transmission towers satisfying reliability constraints sustain consistent reliability levels on all members. Consequently, more balanced optimum designs are accomplished with less structural weight than traditional designs dealing with deterministic design criteria.

  • PDF

Genetic Algorithm and Goal Programming Technique for Simultaneous Optimal Design of Structural Control System (구조-제어시스템의 동시최적설계를 위한 유전자알고리즘 및 Goal Programming 기법)

  • 옥승용;박관순;고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.497-504
    • /
    • 2003
  • An optimal design method for hybrid structural control system of building structures subject to earthquake excitation is presented in this paper. Designing a hybrid structural control system nay be defined as a process that optimizes the capacities and configuration of passive and active control systems as well as structural members. The optimal design proceeds by formulating the optimization problem via a multi-stage goal programming technique and, then, by finding reasonable solution to the optimization problem by means of a goal-updating genetic algorithm. The process of the integrated optimization design is illustrated by a numerical simulation of a nine-story building structure subject to earthquake excitation. The effectiveness of the proposed method is demonstrated by comparing the optimally designed results with those of a hybrid structural control system where structural members, passive and active control systems are uniformly distributed.

  • PDF

The Elastic Critical Loads of Sinusolidally Tapered Symmetric Compression Members (정현상 대칭으로 Taper진 변단면 압축재의 임계하중)

  • 오금열;홍종국;김순철;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.27-34
    • /
    • 2000
  • The elastic critical loads of prismatic compression members can be easily determined by the conventional analytic method. In the cases of sinusoidally tapered members, however, the determination of elastic critical loads become impossible when one relies on the analytic method. In this paper, the critical loads of sinusoidally tapered members were determined by finite element method. Generally the output or results of numerical analysis are valid only when the governing parameters of a given system(or problem) have particular values. To make the practical applications easy, the critical loads determined by finite element method are expressed by some algebraic equations. The constants contained in the algebraic equations were determined by regression technique. The elastic critical loads estimated by the proposed algebraic equations coincide well with those by finite element method.

  • PDF

An Experimental Study on the Structural Behavior of the Repaired flexural members by Epoxy-Bonded Steel Plates (철판압착법에 의해 보강된 휨부재의 구조적 거동에 관한 실험 연구)

  • 황규표;장성재;고훈범;임재형;음성우;문장수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.331-336
    • /
    • 1994
  • This paper presents comprehensive test data on the effect of Epoxy-Bonded Steel Plates on the ultimate strengths, ductilities, failure modes and structural deformations of flexural members strengthened with steel plates on the tension face. To achieve the purpose, six specimens with and without Epoxy-Bonded steel Plates were tested. The results show that Epoxy-Bonded Steel Plate is very effective for strengthening the damaged structure, That is, plated members have enhanced ultimate strength at all load levels until failure. However, the failure mode of plated members is brittle as soon as steel plate separates from concrete face.

  • PDF

Reliability of microwave towers against extreme winds

  • Deoliya, Rajesh;Datta, T.K.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.555-569
    • /
    • 1998
  • The reliability of antenna tower designed for a n-year design wind speed is determined by considering the variability of the strength of the component members and of the mean wind speed. For obtaining the n-year design wind speed, maximum annual wind speed is assumed to follow Gumbel Type-1 distribution. Following this distribution of the wind speed, the mean and standard deviation of stresses in each component member are worked out. The variability of the strength of members is defined by means of the nominal strength and a coefficient of variation. The probability of failure of the critical members of tower is determined by the first order second moment method (FOSM) of reliability analysis. Using the above method, the reliability against allowable stress failure of the critical members as well as the system reliabilities for a 75 m tall antenna tower, designed for n-year design wind speed, are presented.