• 제목/요약/키워드: structural member forces

검색결과 154건 처리시간 0.027초

비선헝 비탄성 유한변위 해석 및 좌굴해석에 의한 강사장교의 극한강도 비교 (Comparison of Limit Strength of Steel Cable-Stayed Bridges using Nonlinear Inelastic Displacement and Buckling Analyses)

  • 김승억;최동호;마상수;송원근
    • 한국전산구조공학회논문집
    • /
    • 제18권3호
    • /
    • pp.277-289
    • /
    • 2005
  • 본 논문은 강사장교의 극한강도를 다루고 있다. 강사장교의 극한강도를 평가하기 위하여 비선형 비탄성 해석 접근법과 분기점 좌굴 고유치해석 접근법인 유효접선탄성계수$(E_f)$법을 사용하여 예제를 수행하였다. 이를 위하여 초기형상을 고려한 실용적인 비선형 비탄성 해석기법을 제시하였다. 초기형상 해석 시각 형상해석 단계마다 보-기둥 부재의 부재력 대신 개선된 구조물형상을 고려하였다. 보-기둥 부재의 기하학적 비선형은 안정함수를 사용하여 고려하였고, 재료적 비선형은 CRC 접선계수와 포물선 함수를 사용하여 고려하였다. 또한, 케이블 부재의 기하학적 비선형은 할선탄성계수 값을 사용하여 고려하였다. 본 연구에서 제안한 해석기법으로 예측된 하중-변위 곡선들이 다른 연구에 의한 결과들과 비교 검증 되었으며, 제시된 3차원 강사장교 모델들에 대하여 제안한 해석기법과 비탄성 좌굴해석을 사용하여 극한강도를 비교하였다.

전단벽-골조 시스템의 내진설계를 위한 근사해석법 (Approximate Analysis of Shear Wall-Frame Structure For Seismic Design)

  • 유석형
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권2호
    • /
    • pp.99-106
    • /
    • 2019
  • 횡력을 받는 전단벽-골조 시스템은 휨거동을 하는 전단벽과 전단거동을 하는 골조가 슬래브의 강체평면운동(Diaphragm Action)을 통하여 상호작용하여 수평력에 효율적으로 저항하는 시스템이다. 횡력을 받는 골조의 거동은 보와 기둥의 휨 변형에 의한 골조의 수평 전단변형과 기둥의 축 변형에 의한 골조의 휨 변형으로 구분 할 수 있다. 일반적으로 전단벽-골조 시스템의 근사해석 시 골조의 휨변형은 무시하여 왔으나, 건물의 높이가 증가 할수록 골조의 휨 거동은 큰 영향을 미칠 것으로 사료된다. 따라서 본 연구에서는 횡력을 받는 전단벽-골조 시스템의 근사해석 시 기둥의 축 변형을 고려하기위하여 병렬전단벽 시스템(Coupled Shear Wall System)의 해석 시 사용하는 연속매체모델(Continuous Medium Model)을 이용하여 횡 변위 및 부재력을 산정할 수 있는 근사식을 수정 제시 하였다. 새롭게 제시된 근사식을 검토하기 위하여 기존 식과 컴퓨터에 의한 Matrix해석 결과와 비교하였으며, 비교결과 건물 높이가 높을수록 본 연구에서 제시한 근사해석 식이 기존 식보다 Matrix 해석 결과에 가깝게 나타났다.

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • 제30권6호
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

지반가속도에 의한 철근콘크리트 전단벽의 비선형 지진응답 및 파괴거동 (Nonlinear Seismic Response and Failure Behavior of reinforced Concrete Shear Wall Subjected to Base Acceleration)

  • 유영화;신현목
    • 한국지진공학회논문집
    • /
    • 제3권3호
    • /
    • pp.21-32
    • /
    • 1999
  • 지진가속도에 의한 부재의 지진거동 특성은 실험적인 방법 또는 등가의 정적실험으로부터 추정되어 온 것이 대부분이다 본 연구에서는 지진가속도에 의한 철근콘크리트 전단벽체의 지진응답 및 파괴거동 특성을 유한요소법을 사용한 해석적인 기법에 의해서 예측하였다 콘크리트 부재에서 균열은 필연적으로 발생하게 되며 이로 인한 부재의 강도 및 강성의 감소 철근의 항복 및 하중의 반복성으로 인한 균열의 개폐등이 수반된다 본 연구에서는 이와 같은 콘크리트와 철근의 비선형 특성을 고려한 이축응력상태에 대한 재료모델과 동적해석 알고리즘을 범용 수치해석기법인 유한요소법을 사용하여 해석프로그램으로 구현하였다 지진가속도를 받는 전단벽을 대상으로 지진응답 및 파괴거동등을 본 연구의 해석적인 방법으로 예측하였으며 그 결과를 신뢰성 있는 연구자의 실험결과와 비교하여 그 타당성을 검증하였다.

  • PDF

Torsional behaviour of reinforced concrete beams retrofitted with aramid fiber

  • Kandekar, Sachin B.;Talikoti, Rajashekhar S.
    • Advances in concrete construction
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Retrofitting is an alteration of existing member or component of the structure. In civil engineering point of view, it is called strengthening of the old structure. Deterioration of structures may be due to aging, corrosion, failure of joints, earthquake forces, increase in service loads, etc. Such structures need urgent repair, retrofitting and strengthening to avoid collapse, cracking and loss in strength or deflection. Advanced techniques are required to be developed for the repair of structural components to replace conventional techniques. This paper focuses exclusively on torsional behaviour of Reinforced Concrete (RC) beams and retrofitted RC beams wrapped with aramid fiber. Beams were retrofitted with aramid fiber by full wrapping and in the form of 150 mm wide strips at a spacing of 100 mm, 150 mm, 200 mm respectively using epoxy resin and hardener. A total 15 numbers of RC beams of 150 mm×300 mm×1300 mm in size were cast, 3 beams are tested as control specimens, and 12 beams are tested for torsion up to the failure and then retrofitted with aramid fiber. Experimental results are validated with the help of data obtained by finite element analysis using ANSYS. The full wrapping configuration of aramid fiber regains 105% strength after retrofitting. With the increase in spacing of fabric material, torsional strength reduces to 82% with about 45% saving in material.

NATM 터널 콘크리트라이닝 설계하중에 관한 연구 (A Study on the Design Loads of NATM Tunnel Concrete Lining)

  • 천병식;신영완
    • 터널과지하공간
    • /
    • 제11권2호
    • /
    • pp.96-108
    • /
    • 2001
  • NATM 터널의 콘크리트라이닝은 계획, 지반조사, 지반-라이닝 상호작용해석, 시공, 관찰, 시공중 수정 등의 과정을 거쳐 시공된다. 따라서, 설계자는 라이닝의 여러 기능, 시공과정, 지반조건 등을 고려하여야 한다. NATM 터널 콘크리트라이닝 설계시 지반조건이 열악하거나 숏크리트의 부식 등으로 1차 지보재가 지보능력을 상실할 경우에 대비하여야 한다. 그러나, 암반이완하중과 잔류수압의 크기, 형태 및 산정방법이 설계자에 따라 다양하게 적용되고 있는것이 현실이다. 본 논문에서는 NATM 터널 콘크리트라이닝 설계시 적용할 수 있는 암반이완하중 산정 법들에 대하여 고찰하고, 설계시 국내에서 주로 적용하는 다양한 암반하중과 잔류수압모델을 조합하여 구조해석을 실시한 후 콘크리트라이닝에 발생 하는 부재력의 크기를 비교하였으며, 적절한 하중조합을 제시하였다.

  • PDF

Improving the behavior of buckling restrained braces through obtaining optimum steel core length

  • Mirtaheri, Masoud;Sehat, Saeed;Nazeryan, Meissam
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.401-408
    • /
    • 2018
  • Concentric braced frames are commonly used in steel structures to withstand lateral forces. One of the drawbacks of these systems is the possibility that the braces are buckled under compressive loads, which leads to sudden reduction of the bearing capacity of the structure. To overcome this deficiency, the idea of the Buckling Restrained Brace (BRB) has been proposed in recent years. The length of a BRB steel core can have a significant effect on its overall behavior, since it directly influences the energy dissipation capability of the member. In this study, numerical methods have been utilized for investigation of the optimum length of BRB steel cores. For this purpose, BRBs with different lengths placed into several two-dimensional framing systems with various heights were considered. Then, the Response History Analysis (RHA) was performed, and finally, the optimum steel core length of BRBs and its effect on the responses of the overall system were investigated. The results show that the shortest length where failure does not occur is the best length that can be proposed as the optimum steel core length of BRBs. This length can be obtained through a formula which has been derived and verified in this study by both analytical and numerical methods.

Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5

  • Yuksel, S. Bahadir
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.849-866
    • /
    • 2012
  • Single span historic bridges often contain non-prismatic members identified with a varying depth along their span lengths. Commonly, the symmetric parabolic height variations having the constant haunch length ratio of 0.5 have been selected to lower the stresses at the high bending moment points and to maintain the deflections within the acceptable limits. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces (FEFs) and fixed-end moments (FEMs) becomes a complex problem. Therefore, this study aimed to investigate the behavior of non-prismatic beams with symmetrical parabolic haunches (NBSPH) having the constant haunch length ratio of 0.5 using finite element analyses (FEA). FEFs and FEMs due to vertical loadings as well as the stiffness coefficients and the carry-over factors were computed through a comprehensive parametric study using FEA. It was demonstrated that the conventional methods using frame elements can lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures. Despite the robustness of FEA, the generation of FEFs and FEMs using the nodal outputs of the detailed finite element mesh still remains an intricate task. Therefore, this study advances to propose effective formulas and dimensionless estimation coefficients to predict the FEFs, FEMs, stiffness coefficients and carry-over factors with reasonable accuracy for the analysis and re-evaluation of the NBSPH. Using the proposed approach, the fixed-end reactions due to vertical loads, and also the stiffness coefficients and the carry-over factors of the NBSPH can be determined without necessitating the detailed FEA.

Analytical model for high-strength concrete columns with square cross-section

  • Campione, G.
    • Structural Engineering and Mechanics
    • /
    • 제28권3호
    • /
    • pp.295-316
    • /
    • 2008
  • In the present paper a mechanical model to predict the compressive response of high strength short concrete columns with square cross-section confined by transverse steel is presented. The model allows one to estimate the equivalent confinement pressures exercised by transverse steel during the loading process taking into account of the interaction of the stirrups with the inner core both in the plane of the stirrups and in the space between two successive stirrups. The lateral pressure distributions at hoop levels are obtained by using a simple model of elastic beam on elastic medium simulating the interaction between stirrups and concrete core, including yielding of steel stirrups and damage of concrete core by means of the variation in the elastic modulus and in the Poisson's coefficient. Complete stress-strain curves in compression of confined concrete core are obtained considering the variation of the axial forces in the leg of the stirrup during the loading process. The model was compared with some others presented in the literature and it was validated on the basis of the existing experimental data. Finally, it was shown that the model allows one to include the main parameters governing the confinement problems of high strength concrete members such as: - the strength of plain concrete and its brittleness; - the diameter, the pitch and the yielding stress of the stirrups; - the diameter and the yielding stress of longitudinal bars; - the side of the member, etc.

Seismic vulnerability assessment criteria for RC ordinary highway bridges in Turkey

  • Avsar, O.;Yakut, A.
    • Structural Engineering and Mechanics
    • /
    • 제43권1호
    • /
    • pp.127-145
    • /
    • 2012
  • One of the most important and challenging steps in seismic vulnerability and performance assessment of highway bridges is the determination of the bridge component damage parameters and their corresponding limit states. These parameters are very essential for defining bridge damage state as well as determining the performance of highway bridges under a seismic event. Therefore, realistic damage limit states are required in the development of reliable fragility curves, which are employed in the seismic risk assessment packages for mitigation purposes. In this article, qualitative damage assessment criteria for ordinary highway bridges are taken into account considering the critical bridge components in terms of proper engineering demand parameters (EDPs). Seismic damage of bridges is strongly related to the deformation of bridge components as well as member internal forces imposed due to seismic actions. A simple approach is proposed for determining the acceptance criteria and damage limit states for use in seismic performance and vulnerability assessment of ordinary highway bridges in Turkey constructed after the 1990s. Physical damage of bridge components is represented by three damage limit states: serviceability, damage control, and collapse prevention. Inelastic deformation and shear force demand of the bent components (column and cap beam), and superstructure displacement are the most common causes for the seismic damage of the highway bridges. Each damage limit state is quantified with respect to the EDPs: i.e. curvature and shear force demand of RC bent components and superstructure relative displacement.