• Title/Summary/Keyword: structural materials

Search Result 5,861, Processing Time 0.028 seconds

Evaluation of Mechanical Performance Considering Prolonged Length of Glass Fiber-Reinforced Composite on Structure Weakness by Thermal Stress at Secondary Barrier in Cryogenic Liquified Gas Storage (극저온 액화가스 화물창 2차방벽 구조 열 응력 취약 부 Prolonged 길이 고려 유리섬유 강화 복합재 기계적 물성 평가)

  • Yeon-Jae Jeong;Hee-Tae Kim;Jeong-Dae Kim;Jeong-Hyun Kim;Seul-Kee Kim;Jae-Myung Lee
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.246-252
    • /
    • 2023
  • A secondary barrier made of glass fiber reinforced composites has been installed infinitely using automatic bonding machine(ABM) in membrane type LNG cargo containment system (CCS). At the same time, significant thermal stress due to cryogenic heat shrinkage has occurred in the composite on the non-bonding area between the adhesive fixation at both ends. There have been studies from the perspective of structural safety evaluation taking this into account, but none that have analyzed mechanical property taking an prolonged length into account. In this study, 2-parameter Weibull distribution statistical analysis was used to standardize reliable mechanical property for actual length, taking into account the composite's brittle fracture of ceramic material with wide fracture strength dispersion. Related experimental data were obtained by performing uniaxial tensile tests at specific temperatures below cryogenic condition considering LNG environment. As a result, the mechanical strength increased about 1.5 times compared to -20℃ at -70℃ and initial non-linear behavior of fiber stretched was suppressed. As the temperature decreased until the cryogenic, the mechanical strength continued to increase due to cold brittleness. The suggested mechanical property in this study would be employed to secure reliable analysis support material property when assessing the safety of secondary barrier's structures.

Nature of the Interfacial Regions in the Antiferromagnetically-coupled Fe/Si Multilayered Films

  • Moon, J.C.;Y.V. Kudryavtsev;J.Y.Rhee;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.174-174
    • /
    • 2000
  • A strong antiferromagnetic coupling in Fe/Si multilayered films (MLF) had been recently discovered and much consideration has been given to whether the coupling in the Fe/Si MLF system has the same origin as the metal/metal MLF. Nevertheless, the nature of the interfacial ron silicide is still controversial. On one hand, a metal/ semiconductor structure was suggested with a narrow band-gap semiconducting $\varepsilon$-FeSi spacer that mediates the coupling. However, some features show that the nature of coupling can be well understood in terms of the conventional metal/metal multilayered system. It is well known that both magneto-optical (MO) and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In this study, the nature of the interfacial regions is the Fe/Si multilayers has been investigated by the experimental and computer-simulated MO and optical spectroscopies. The Fe/Si MLF were prepared by rf-sputtering onto glass substrates at room temperature with the number of repetition N=50. The thickness of Fe sublayer was fixed at 3.0nm while the Si sublayer thickness was varied from 1.0 to 2.0 nm. The topmost layer of all the Fe/Si MLF is Fe. In order to carry out the computer simulations, the information on the MO and optical parameters of the materials that may constitute a real multilayered structure should be known in advance. For this purpose, we also prepared Fe, Si, FeSi2 and FeSi samples. The structural characterization of Fe/Si MLF was performed by low- and high -angle x-ray diffraction with a Cu-K$\alpha$ radiation and by transmission electron microscopy. A bulk $\varepsilon$-FeSi was also investigated. The MO and optical properties were measured at room temperature in the 1.0-4.7 eV energy range. The theoretical simulations of MO and optical properties for the Fe/Si MLF were performed by solving exactly a multireflection problem using the scattering matrix approach assuming various stoichiometries of a nonmagnetic spacer separating the antiferromagnetically coupled Fe layers. The simulated spectra of a model structure of FeSi2 or $\varepsilon$-FeSi as the spacer turned out to fail in explaining the experimental spectra of the Fe/Si MLF in both intensity and shape. Thus, the decisive disagreement between experimental and simulated MO and optical properties ruled out the hypothesis of FeSi2 and $\varepsilon$-FeSi as the nonmagnetic spacer. By supposing the spontaneous formation of a metallic ζ-FeSi, a reasonable agreement between experimental and simulated MO and optical spectra was obtained.

  • PDF

Considerations for Implementing Online Art-Based Peer Supervision (온라인 미술기반 동료 슈퍼비전 실행에 대한 고려사항)

  • Yoon, Ra-Mi;Kim, Soo-In;Jung, HeeJae
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.404-415
    • /
    • 2022
  • The purpose of this study is to propose considerations to help actual application based on the characteristics of the online art-based peer supervision execution process. Colleagues in the clinical art therapy doctoral program, including the researcher, attempted to repeatedly identify problems and apply improvements in the implementation process as research participants, and qualitatively analyzed the various data collected in the process. Looking at the characteristics of the analysis results, extensibility of materials and space was confirmed in terms of 'art-based' and initiative, convenience, and speed in terms of 'online'. The considerations identified through this are as follows. First, 'pre-structuring' should be based on clear boundaries and setting, prior consultation of the group, and self-directed preparation and attitude. Second, for the 'structural aspect of art', space and media to help immersion through creation, and stable implementation structure should be established. Third, in the 'technical aspect', it is necessary to apply a method that can deliver a work of art and a method that can communicate the creator's clear intention. Lastly, for the 'ethical aspect', it is necessary to use online software in accordance with the minimum security standards and to make efforts to repeatedly maintain confidentiality. This study is meaningful in that it suggested a practical method for maintaining the professional competence of art therapists and expanding networks among art therapists in various situations including pandemics.

A Study on Path of depression of Married Working Women (기혼 취업여성의 우울 경로에 관한 연구)

  • Lee, Jin-Sook;Choi, Won-Seok
    • Korean Journal of Social Welfare Studies
    • /
    • v.42 no.4
    • /
    • pp.389-412
    • /
    • 2011
  • The purpose of this study is to closely examine causality on the married-working women's depression. For this, the analytical materials were used the primary Seoul Metropolis Welfare Panel survey data. 507 married-working women in their 20s~50s were selected among survey subjects of Seoul Metropolis Welfare Panel data. The analytical method was used the structural equation model. As a result of analysis, it could be known that the path of perfect mediating effect in depression was formed after passing through the benefits satisfaction and the marital happiness from gender role attitude in the married-working women and that the benefits satisfaction has the partial mediating effect between depression and marital happiness. Suggesting a plan for getting rid of depression in the married-working women based on the results of this study, first of all, the married-working women's depression is greatly accredited to what our society regards domestic work yet as woman's role. Thus, the policy-based measure is demanded that can support for working women to be possibly compatible in work and family life and that can induce men's participation in household affairs and child-rearing in such context. Second, it was indicated that the more the married-working women adhere strictly to the gender role attitude of traditionalism, the lower result the marital happiness and benefits satisfaction have. Considering this, a plan for activating welfare system and family-friendly system is demanded that can change gender role value in traditionalism, which is being left in our society. Third, to promote marital happiness that has great influence upon the married-working women's depression, there is a need of seeking a plan, which further intensifies the family services including the marital education and the parent education.

Experimental Study on the Manufacturing and Waterproofing Properties of Self-healing Concrete Waterproofing Agent Using Microcapsules (마이크로캡슐을 활용한 자기치유 구체방수제의 제조 및 방수특성에 관한 실험적 연구)

  • Yun-Wang Choi;Jae-Heun Lee;Neung-Won Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.289-298
    • /
    • 2023
  • In this study, the development of a self-healing concrete waterproofing agent was examined, focusing on its manufacturing and waterproofing properties. The optimal ratio using microcapsules for the concrete waterproofing agent was determined through assessments of flow, compressive strength, and permeability conducted during the mortar stage. These findings aimed to provide fundamental data for evaluating the self-healing properties of the concrete waterproofing agent designed for use in concrete structures. The self-healing concrete waterproofing agent was comprised of three types of inorganic materials commonly used for repair purposes. From experimental results, a composition ratio with a high potassium silicate content, referred to as SIM-2, was found suitable. A surfactant mixing ratio of 0.03 % was identified to enhance the dispersibility of the concrete waterproofing agent, while a mixing ratio of 0.2 % distilled water was deemed suitable for viscosity adjustment. For the magnetic self-healing concrete waterproofing agent's healing agent, using microcapsules in the range of 0.5 % to 0.7 % met the KS F 4949 and KS F 4926 standards.

Investigation of Technical Requirements for a Protective Shield with Lunar Regolith for Human Habitat (월면토를 이용한 달 유인 우주기지 보호층의 기술적 요구조건에 관한 연구)

  • Lee, Jangguen ;Gong, Zheng;Jin, Hyunwoo ;Ryu, Byung Hyun;Kim, Young-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.10
    • /
    • pp.49-55
    • /
    • 2023
  • The discovery of lunar ice in the lunar polar region has fueled international interest in in situ resource utilization (ISRU) and the construction of lunar habitats. Unlike Earth's atmosphere, the Moon presents unique challenges, including frequent meteoroid impacts, direct exposure to space radiation, and extreme temperature variations. To safeguard lunar habitats from these threats, the construction of a protective shield is essential. Lunar regolith, as a construction material, offers distinct advantages, reducing transportation costs and ensuring a sustainable supply of raw materials. Moreover, it streamlines manufacturing, integration schedules, and enables easy repairs and modifications without Earth resupply. Adjusting the shield's thickness within the habitat's structural limits remains feasible as lunar conditions evolve. Although extensive research on protective shields using lunar regolith has been conducted, unresolved conflicts persist regarding shield requirements. This study conducts a comprehensive analysis of the primary lunar threats and suggests a minimum shield thickness of 2 m using lunar regolith. Furthermore, it outlines the necessary technology for the rapid construction of such protective shields.

A Rigorous Examination of the Interplay Between Fire Resistance of 1-Hour Rated Fireproof Steel Walls and the Flexural Strength of Individual Panels (1시간 내화구조용 철강재 벽체의 내화성능과 단위 패널 휨강도의 관계 고찰)

  • Jeon, Soo-Min;Ok, Chi-Yeol;Kang, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.537-546
    • /
    • 2023
  • For the purpose of fire delineation within buildings, steel walls in Korea are mandated to undergo rigorous certification as fire-resistant entities, substantiated via a series of qualitative assessments. Predominantly, these evaluations comprise the fire resistance test paired with supplementary examinations; specifically for steel walls, these encompass the gas hazard and panel bending strength tests. Given the prevalence of semi-noncombustible core materials, gas hazard tests are largely rendered superfluous, pivoting the focus solely onto the panel bending strength test during the certification trajectory. This particular test is designed to gauge the flexural robustness of individual wall panels. An enhanced bending strength is postulated to fortify both the structural integrity and thermal insulation of the wall by mitigating potential deformations. In this scholarly exploration, an analytical deep dive was undertaken into extant, valid certification test datasets. The endeavor aimed to ascertain the depth of correlation between the designated fire resistance metric and the bending strength, the latter being the sole supplementary assessment for steel walls. In distilling the findings, it was discerned that temperature elevations beyond baseline values exhibited no statistically salient linkage with the panel's bending strength.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

Electrochemical Characteristics of CFX Based Lithium Primary Batteries Produced by Carbon Fiber Reinforced Plastic -Derived Waste Carbon Fibers (탄소섬유강화플라스틱 유래 폐 탄소섬유로 제조된 불화탄소 기반 리튬일차전지의 전기화학적 특성)

  • Naeun Ha;Chaehun Lim;Seongmin Ha;Seongjae Myeong;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.515-521
    • /
    • 2023
  • In this study, waste carbon fiber obtained by pyrolysis of carbon fiber reinforced plastic (CFRP) was used to produce carbon fluoride through vapor phase fluorination and recycled as a reducing electrode material for lithium primary batteries. First, the physicochemical properties of the waste carbon fiber obtained by pyrolysis were determined, and the structural and chemical properties of carbon fluoride were analyzed to evaluate the effect of vapor phase fluorination on the waste carbon fiber. XRD analysis confirmed that the hexagonal network carbon laminated structure (002 peak) of the waste carbon fiber was gradually converted into a carbon fluoride structure (CFX, 001 peak) as the temperature of gas phase fluorination increased. The discharge capacity of the lithium primary battery produced using this carbon fluoride was up to 862 mAh/g. This was compared to the discharge capacity of carbon fluoride-based Li-ion batteries made of other carbon materials. These results suggest that carbon fluoride made from waste CFRP-based carbon fibers can be used as a reducing electrode material for Li-ion batteries.

Electrochemical Characteristics of Setaria viridis-Based Carbon Anode Materials Prepared by Thermal Treatment for Lithium-Ion Secondary Batteries (열처리에 의해 제조된 강아지풀 기반 리튬 이온 이차전지용 탄소 음극재의 전기화학적 특성)

  • Dong Ki Kim;Chaehun Lim;Seongjae Myeong;Naeun Ha;Chung Gi Min;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.140-147
    • /
    • 2024
  • In order to increase the utilization of biomass, an electrochemical performance was considered after manufacturing a carbon anode material (SV-C) for a Setaria viridis-based lithium ion secondary battery through a heat treatment process. When the heat treatment temperature of the Setaria viridis is as low as 750 ℃, the capacitance (1003.3 mAh/g, at 0.1 C) is high due to the negative (-) charge of oxygen present on the surface attracting lithium, along with the low crystallinity and high specific surface area (126 m2/g), but the capacity retention rate is believed to be as low as 61.0% (at 500 cycles and 1 C). In addition, it was confirmed that when the heat treatment temperature increased to 1150 ℃, the carbon layer was condensed to be excellent in arrangement, and the structural defects were reduced, resulting in a significant reduction in the specific surface area (32 m2/g) of the pores. Furthermore, when the surface defects of the anode material are reduced and the crystallinity is increased, the capacity retention rate is as high as 89.7% (at 500 cycles and 1 C), but the degree of defects is small, the active point is reduced, and the specific capacity is considered to be very low at 471.7 mAh/g. In the scope of this study, it was found that in the case of the Setaria viridis-based carbon anode material manufactured according to the heat treatment temperature, the surface oxygen content and crystallinity have higher reliability on the electrochemical properties of the anode material than the specific surface area.