• Title/Summary/Keyword: structural materials

Search Result 5,843, Processing Time 0.031 seconds

Structural Fire Analysis of a Composite Beam Protected by Fire-Resistant Materials (내화피복을 적용한 강합성보의 구조화재해석)

  • Jun Won Kang;Moon Soo Kang;Hyejin Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.137-145
    • /
    • 2023
  • This paper presents the effects of fire-resistant materials on the temperature and vertical deflection of a composite beam exposed to fire through nonlinear thermo-mechanical analysis. The fire was modeled using the standard fire curve proposed in American Society for Testing and Materials (ASTM) E119. Fire-resistant materials were modeled by reducing the heat transfer coefficient from the air layer to the beam. The temperature and vertical deflection of the uncoated composite beam were measured using a laboratory fire test, and the results of the structural fire analysis were verified through comparison with experimental results. By introducing the fire-resistance effect, the reduction in the temperature and deflection of the beam for the ASTM E119 standard fire can be reasonably estimated. Based on a case study of the heat transfer coefficient, the fire-resistant effect on the thermo-mechanical response of a composite beam in the event of a fire is presented.

Subscale Main Wing Design and Manufacturing of WIG Vehicle Using Carbon Fiber Composites

  • Park, Hyun-Bum
    • International Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.1-4
    • /
    • 2017
  • This work dealt with design and manufacturing of WIG vehicle wing using carbon/epoxy composite materials. In this study, structural design and analysis of carbon composite structure for WIG craft were performed. Firstly, structural design requirement of wing for WIG vehicle was investigated. After structural design, the structural analysis of the wing was performed by the finite element analysis method. It was performed that the stress, displacement and buckling analysis at the applied load condition. And also, manufacturing of subscale wing using carbon/epoxy composite materials was carried out. After structural test of target structure, structural test results were compared with analysis results. Through the structural analysis and test, it was confirmed that the designed wing structure is safety.

Annealing Characteristics of Oxygen Free Copper Sheet Processed by Differential Speed Rolling (이주속압연된 무산소동 판재의 어닐링 특성)

  • Lee, Seong-Hee;Yoon, Dae-Jin;Euh, Kwangjun;Kim, Su-Hyun;Han, Seung-Zeon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.77-84
    • /
    • 2010
  • Annealing characteristics of an oxygen free copper (OFC) processed by differential speed rolling (DSR) were investigated in detail. An OFC sample with a thickness of hum was rolled to 35% reduction at ambient temperature without lubrication, varying the differential speed ratio from 1.0:1 to 2.2:1, and then annealed for 0.5h at various temperatures from 100 to $400^{\circ}C$. Different recrystallization behavior was observed depending on the differential speed ratio, especially in the case of annealing at $200^{\circ}C$ Complete recrystallization occurred in the specimens annealed at temperatures above $250^{\circ}C$ regardless of the differential ratios. The hardness distribution in the thickness direction of the rolled OFC sheets varied depending on the differential speed ratios. These annealing characteristics were explained by the magnitude of shear strain introduced during rolling.

Effect of Glass Fiber Orientation on Impact Fracture Properties: Coupled Injection Molding & Structural Analysis (Glass Fiber 배향성이 충격 파괴에 미치는 영향: 사출-구조 연성해석)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.129-135
    • /
    • 2023
  • The use of engineering plastic products in internal combustion engine and electric cars to improve stiffness and reduce weight is increasing significantly. Among various lightweight materials, engineering plastics have significant advantages such as cost reduction, improved productivity, and weight reduction. In particular, engineering plastics containing glass fibers are used to enhance stiffness. However, the stiffness of glass fibers can increase or decrease depending on their orientation. Before developing plastic products, optimal designs are determined through injection molding and structural analysis to enhance product reliability. However, reliable analysis of products with variable stiffnesses caused by anisotropy cannot be achieved via the conventional isotropic structural analysis, which does not consider anisotropy. Therefore, based on the previously reported study "the Effect of Impacted Fracture in Glass Fiber Orientation with Injection Molding & Structural Coupled Analysis," this study aims to investigate the structural analysis and degradation mechanisms of various polymers. In particular, this study elucidates the actual mechanism of plastic fracture by analyzing various fracture conditions and their corresponding simulations. Furthermore, the objective of this study is to apply the injection molding and structural coupled analysis mechanism to develop engineering plastic products containing glass fibers. In addition, the study aims to apply and improve the plastic fracture mechanism in actual products by exploring anisotropy and stiffness reduction owing to the unfilled polymer weld line.

Feasibility Analysis for the Introduction of Safety Certification System for Assembled Temporary Equipment and Materials (조립된 가설기자재 안전인증제도 도입의 타당성 분석)

  • Jeong, Seong Choon;Kwon, Jun Hyuk;Won, Jeong Hun;Kwon, Yong Jun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.32-42
    • /
    • 2020
  • In this study, in order to secure the necessity of introducing the safety certification system for the assembled temporary equipment and materials, the feasibility of the introduction was analyzed through literature review, structural analysis, and actual experiments and surveys related to the assembled temporary equipment and materials. In the previous studies, it was found that the research on the assembled temporary equipment and materials was insufficient, and it was possible to grasp the necessity of introducing the safety certification system for the assembled temporary equipment and materials. In addition, in the results of the serious accident analysis, it was found that the soundness of the temporary equipment and materials is determined by the structural characteristics after it was assembled. As a result of the feasibility analysis of the introduction of the safety certification of the assembled temporary equipment and materials through structural analysis, it is possible to effectively and rationally reflect the main geometrical influence factors, and to introduce the safety certification system that can test the procedures and procedures of the assembled temporary equipment and materials and based on it. It was found that there is a need. As a result of feasibility analysis on the necessity of introducing the safety certification system for assembled temporary equipment and materials through actual experiments, the existing single member performance evaluation has limitations in evaluating the structural performance of the assembled temporary equipment and materials. It was found that there is a need to introduce a safety certification system. As a result of gathering opinions on the feasibility of introducing the safety certification system for assembled temporary equipment and materials of manufacturers and users through the survey, it was found that the overall positive response result was high and the effectiveness was high.

Potential of HAZ Property Improvement through Control of Grain Boundary Character in a Wrought Ni-based Superalloy (단련용 Ni기 초내열합금의 입계구조 제어를 통한 HAZ 특성 향상 가능성 고찰)

  • Hong, H.U.;Kim, I.S.;Choi, B.G.;Jeong, H.W.;Yoo, Y.S.;Jo, C.Y.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.43-43
    • /
    • 2009
  • 단련용 다결정 Ni기 초내열합금은 우수한 가공성, 내산화성, 고온특성 등으로 가스터빈 연소기, 디스크, 증기발생기 전열관 등 발전용 고온부품 소재에 널리 적용되고 있다. 최근 발전설비의 고효율화를 꾀하기 위해 작동 온도를 현격히 증가시키는 기술방향으로 발전하고 있고, 소재측면에서는 기존의 초내열합금 대비 고기능성을 확보할 수 있는 차세대 Ni기 초내열합금 개발이 유럽, 미국, 일본, 중국 등을 중심으로 활발히 이루어지고 있다. 이러한 소재의 고온강도 (온도수용성)를 향상시키기 위해서는 통상 규칙격자 금속간화합물인 $Ni_3(Al,Ti)-{\gamma}'$상의 분율을 증가시킬 수 있지만, ${\gamma}'$상분율이 증가할 경우 용접 및 후열처리 동안 용접열영향부 (HAZ)에서 액화균열이 발생할 가능성이 높아진다. 결정립계를 따라 발생하는 HAZ 액화균열은 입계특성에 의해 크게 영향을 받을 것으로 판단된다. 한편, 본 연구자들은 최근 입계 serration 현상을 단련용 합금에 도입시키는 특별한 열처리를 이론적 접근법을 통해 개발하였다. 형성된 파형입계는 결정학적인 관점에서 조밀 {111} 입계면을 갖도록 분해 (dissociation)되어 낮은 계면에너지를 갖게 됨을 확인하였으며, 입계형상 변화뿐만 아니라 탄화물 특성변화까지 유도하여 크리프 수명을 기존대비 약 40% 정도 향상시킴을 확인하였다. 이러한 직선형 입계 대비 'special boundary'로 간주되는 파형입계가 도입될 경우, HAZ 결정립크기 변화 및 액화거동에 미치는 영향을 고찰하고, 아울러 입계특성 제어가 용접성/용접부 품질 향상에 기여할 수 있는 가능성도 토의하고자 하였다. 본 연구에서는 재현 HAZ 열사이클 시험을 통해 미세구조를 정량적으로 비교하였다. 상대적으로 입계구조가 안정된 파형입계의 이동속도가 高계면 에너지를 갖는 직선형 입계보다 느려 HAZ 결정립 성장이 효과적으로 억제됨을 확인할 수 있었다. 입계 액화거동을 살펴보면, 두 시편 모두 $M_{23}C_6$, MC 등 입계탄화물 계면이 빠른 승온중 액화반응 (constitutional liquation)에 의해 입계가 액화되었으며, 이후 급냉에 의해 입계에 액상막이 존재한 흔적이 발견되었다. 최고온도별로 입계액화 폭/비율을 정량적으로 비교한 결과, 파형입계가 직선입계 대비 대체로 낮음을 확인할 수 있었으며, 때때로 액화되지 않고 잔존하는 입계 탄화물이 관찰되었다. 재현 HAZ 미세조직을 통해 Hot ductility 시험 결과를 유추하자면, 파형입계가 직선입계 보다 좁은 취성온도영역 (Brittle Temperature Range)을 나타낼 것으로 예상되어, 입계특성제어에 의해 Ni기 초내열합금의 용접성을 향상 가능성을 확인하였다.

  • PDF

Evaluation of Underwater-Curing Coating Materials

  • Nah, Hwan-Seon;Kim, Kang-Seok;Kim, Kang-Sik;Lee, Chul-Woo;Baker, Randy
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.68-73
    • /
    • 2009
  • An evaluation of underwater - repair coating materials was based on the premise that defective areas of the existent epoxy coating such as blistering and cracking will be repaired on spot under submerged condition. Tests include the clarification as to whether they are compatible between as-built coating and new repair coating on each concrete specimen. Candidate coating materials for repair were tested in a laboratory to scrutinize their suitability to perform the needed function satisfactorily. The qualification tests performed are as a minimum as follows: Integrated radiation tolerance test, chemical resistance test (submerged condition in deionized water), hardness test and adhesion test of the repair materials. The proper repair coating materials were selected and approved from this test results.

A Study on the Recycling of Coal Ash as Fill Materials (석탄회 자원의 채움재로서의 활용에 관한 연구)

  • 천병식;고용일;송경율;이준기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.513-520
    • /
    • 1999
  • 20 million tons of coal ash has been produced in Korea annually. This causes the environmental problems and the cost of land for ash pond. However the amount of coal ash for recycling is small because of the low level of recycling technology and the ignorance. As the coal ash has the significant engineering properties, it can be utilized as soft ground stabilizer, backfill materials and so forth. The purpose of this paper is to summarize some of the recycling methods of coal ash. One is structural backfill materials, the other is flowable fill. Optimal mixture ratio(fly ash : bottom ash) is determined for structural backfill materials and the model test is performed. The model test accompanied with physical tests were executed for identifying that the flowable fly ash can be used as fill materials such as trench back filling.

  • PDF

A Study on the Recycling of Coal Ash as Structural Backfill materials (구조물 뒷채움재로서의 석탄회 활용에 관한 연구)

  • 여유현
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.74-79
    • /
    • 2000
  • The purpose of this paper is to recycle coal ash as structural backfill materials from electric power plants. Two million tons of coal ash are produced annually. The laboratory test was executed for the basic compatibility as substitution for structural backfill materials and the optimal mixture ratio(fly ash : bottom ash) was decided. In addition the model test was performed using medium scale earth pressure model with small size earth pressure cells model box data logger and some other apparatuses. Mixed coal ash and excellent backfill materials(coheisonless soil SW) were compared in the view of lateral earth pressure variation depending on wall displacement. The reduction of earth pressure when coal ash was used as a bockfill material was monitored comparing to that of cohesionless soil. the cost and environmental pollutants by treating coal ash can be reduced through developing the recycling technology.

  • PDF