Browse > Article
http://dx.doi.org/10.3365.KJMM.2010.48.01.077

Annealing Characteristics of Oxygen Free Copper Sheet Processed by Differential Speed Rolling  

Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University,)
Yoon, Dae-Jin (Department of Advanced Materials Science and Engineering, Mokpo National University,)
Euh, Kwangjun (Structural Materials Division, Korea Institute of Materials Science)
Kim, Su-Hyun (Structural Materials Division, Korea Institute of Materials Science)
Han, Seung-Zeon (Structural Materials Division, Korea Institute of Materials Science)
Publication Information
Korean Journal of Metals and Materials / v.48, no.1, 2010 , pp. 77-84 More about this Journal
Abstract
Annealing characteristics of an oxygen free copper (OFC) processed by differential speed rolling (DSR) were investigated in detail. An OFC sample with a thickness of hum was rolled to 35% reduction at ambient temperature without lubrication, varying the differential speed ratio from 1.0:1 to 2.2:1, and then annealed for 0.5h at various temperatures from 100 to $400^{\circ}C$. Different recrystallization behavior was observed depending on the differential speed ratio, especially in the case of annealing at $200^{\circ}C$ Complete recrystallization occurred in the specimens annealed at temperatures above $250^{\circ}C$ regardless of the differential ratios. The hardness distribution in the thickness direction of the rolled OFC sheets varied depending on the differential speed ratios. These annealing characteristics were explained by the magnitude of shear strain introduced during rolling.
Keywords
differential speed rolling; oxygen free copper; annealing; strain; hardness;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 K.-H. Kim and D. N. Lee, Acta Mater. 49, 2583 (2001)   DOI   ScienceOn
2 J. Watanabe, T. Sakai, N. Iwamoto, and H. Utsunomiya, J. JRICu 44, 73 (2005)
3 S. H. Lee, D. J. Yoon, T. Sakai, S. H. Kim, and S. Z. Han, J. Kor. Inst. Met. & Mater. 47, 121 (2009)
4 T. Kamijo, S. Shinya, and H. Hukutomi, J. Jap. Soc. Tech. Plast. 25, 375 (1984)
5 K. Koyama and T. Komatsubara, KTNZOKU Mater. Sci. Tech. 78, 29 (2008)
6 F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., p.221-222, Elsevier Ltd., Oxford (2004)
7 W. J. Kim, J. D. Park, and W. Y. Kim, J. Alloys and Compounds 460, 289 (2008)   DOI   ScienceOn
8 Y. H. Ji and J. J. Park, Mater. Sci. Eng. 449A, 14 (2009)
9 Q, Cui and K. Ohori, Mater. Sci. Tech. 16, 1095 (2000)
10 T. Sakai, K. Yoneda, and Y. Saito, Mate. Sci. Forum 396-402, 309 (2002)   DOI
11 T. Sakai, S. Hamada, and Y. Saito, Scr. Mater. 44, 2569 (2001)   DOI   ScienceOn
12 S. H. Lee, T. Sakai, and D. H. Shin, Mater. Trans. 44, 1382 (2003)   DOI   ScienceOn
13 T. Hirohata, S. Masaki, and S. Shima, J. Mater. Proc. Tech. 111, 113 (2001)   DOI   ScienceOn
14 S. H. Lee, and D. N. Lee, J. Mech. Sci. 43, 1997 (2001)   DOI   ScienceOn