• 제목/요약/키워드: structural lightweight aggregate concrete

검색결과 89건 처리시간 0.023초

초기재령에서 보통골재 및 경량골재 콘크리트의 시간경과에 따른 초음파 속도 변화 (Ultrasonic Pulse Velocity of Normal Aggregate Concrete and Lightweight Aggregate Concrete at Early age According to Elapsed Time)

  • 김원창;최형길;남정수;김규용;이태규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.61-62
    • /
    • 2021
  • Because of the problem of increasing self-weight due to the enlargement and high-rise of buildings using normal aggregate concrete, the need for structural lightweight aggregate concrete increases. However, early strength prediction is required when placing structural lightweight aggregate concrete, but research is insufficient. In this study, the ultrasonic pulse velocity of normal aggregate concrete and lightweight aggregate concrete was measured at early age. As a result, the ultrasonic pulse velocity of lightweight aggregate concrete was lower than normal aggregate concrete according to elapsed time at early age.

  • PDF

Monotonic and cyclic flexural tests on lightweight aggregate concrete beams

  • Badogiannis, E.G.;Kotsovos, M.D.
    • Earthquakes and Structures
    • /
    • 제6권3호
    • /
    • pp.317-334
    • /
    • 2014
  • The work is concerned with an investigation of the advantages stemming from the use of lightweight aggregate concrete in earthquake-resistant reinforced concrete construction. As the aseismic clauses of current codes make no reference to lightweight aggregate concrete beams made of lightweight aggregate concrete but designed in accordance with the code specifications for normal weight aggregate concrete, together with beams made from the latter material, are tested under load mimicking seismic action. The results obtained show that beam behaviour is essentially independent of the design method adopted, with the use of lightweight aggregate concrete being found to slightly improve the post-peak structural behaviour. When considering the significant reduction in deadweight resulting from the use of lightweight aggregate concrete, the results demonstrate that the use of this material will lead to significant savings without compromising the structural performance requirements of current codes.

구조용 경량골재 개발에 따른 경량콘크리트의 동결융해특성에 관한 연구 (Property Evaluation of the Freeze-Thawing for Lightweight Concrete with Development of Structural Lightweight Aggregates)

  • 장동일;채원규;조광현;김광일;손영현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.129-136
    • /
    • 1998
  • In this study, lightweight aggregates were developed to see the possible application as a structural uses. For the evaluation purpose, several testings were conducted to compare the physical characteristics between the controlled lightweight aggregates and other lightweight aggregates purchased from different sources. The tests included property changes of fresh concrete and strength characteristics of hardened concrete for both normal and high strength ranges. In addition, a experiment was performed to analyze the freezing and thawing resistance of new lightweight aggregate concrete against other lightweight aggregate concrete against other lightweight aggregate concretes with some experimental parameters such as lightweight aggregates, curing conditions, and water-cement ratio. The test showed that the new lightweight aggregate could be used structural components. Continuous study will be planned for future evaluations.

  • PDF

발포유리소재를 잔골재로 부분 치환한 경량콘크리트의 특성 (Properties of Light-weight Concrete containing Foamed Glass as a part of Fine Aggregate)

  • 이진우;박희곤;배연기;이재삼;이근행;문성환
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.113-116
    • /
    • 2008
  • In these days, properties of concrete has been demanded to be high performance because concrete structure was bigger and higher. So studies on high strength concrete and lightweight concrete has been frequently done. But lightweight concrete has been used to limited non-structural elements in th country. Lightweight aggregate mixed with lightweight concrete was only coarse aggregate in case of the structural lightweight concrete. In the country studies on the lightweight concrete was poor and unvaried. Also it is difficult to be practical use of lightweight concrete was that it has been expensive. It was study on the using fine lightweight aggregate with lightweight concrete to crushed by-products and wastes to get to make foamed glass with recycled glass. So it was tested by fine aggregate standard and mixed with.

  • PDF

시험방법에 따른 친환경 경량콘크리트의 상대동탄성 계수 비교 (Relative Dynamic Modulus of Elasticity Comparison of the Eco-friendly Lightweight Concreate According to the Experimental Method)

  • 이수형;이한백
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.181-182
    • /
    • 2016
  • We developed eco-friendly lightweight concrete in order to apply eco-friendly lightweight concrete into structural wall or slab of shallow depth urban railway system. However, since lightweight aggregate has different structural feature of porous and it has been overvalued at current KS standard when applied, we did compare the characteristics of freezing and thawing of normal weight aggregate concrete by comparative test method(KS, ASTM). According to test method, there was a big difference of dynamic elastic modulus in lightweight concrete rather than in normal weight aggregate concrete. The big absorption factor in lightweight aggregate is main reason for that. For more detail, in KS law in which only 14 days water curing is carried out, the big amount of moisture in lightweight aggregate is frozen and high heaving pressure occurs and finally that lead to destruction of lightweight concrete. Therefore, it is considered that in case of lightweight concrete, resistibility against freezing and thawing has been undervalued in domestic KS law compared to ASTM law, which is overseas standard. So, a variety of examination about testing criteria and rule would be necessary for exact assessment of lightweight concrete.

  • PDF

기포제를 사용한 구조용 경량 콘크리트의 개발에 관한 실험적 연구 (An Experimental Study on the Development of Structural Lightweight Concrete using Foam Agent)

  • 최민철;이한승;태성호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.241-244
    • /
    • 2005
  • The existing structural lightweight concrete is almost manufactured by using lightweight aggregate. But most of a lightweight aggregate depends on income, it is wholly lacking domestic utilizer. So in this study we investigate the developmental possibility of structural lightweight concrete using only the aggregate of the general concrete and foam agent. As the result of experiments this paper confirmed the possibility of development of structural lightweight concrete which shows compressive strength 210kgf/$cm^{2}$ and specific gravity 1.8 t/$m^{3}$ using only foam agent

  • PDF

Pilot Plant(10톤/일)를 이용한 하수슬러지 인공경량골재의 제조 (Manufacturing of Lightweight Aggregate using Sewage Sludge by a Pilot Plant(10ton/day))

  • 문경주;이화영;소승영;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.117-120
    • /
    • 2006
  • The purpose of this study is to efficiently treat the sewage sludge discharged from sewage treatment plants and evaluate the feasibility of the manufacture of lightweight aggregates(LWA) using a large quantity of sewage sludge. Sintered lightweight aggregate from sewage sludge is experimentally manufactured with various mass ratios of clay to sewage sludge by a pilot plant, and is tested for density, water absorption and crushing value. Their physical properties are compared to those of a commercial sintered lightweight aggregate. As a result, an experimentally manufactured lightweight aggregate is similar or superior in physical properties to the commercial lightweight aggregate. The manufactured lightweight aggregate could be used for structural concrete and non-structural concrete.

  • PDF

구조용 경량골재 콘크리트의 폭렬특성 (Explosive Spalling of Structural Lightweight Aggregate Concrete)

  • 송훈;이종찬;이세현;김우재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.477-480
    • /
    • 2006
  • Normally, with all ensuring the fire resistance structure as a method of setting the required cover thickness to fire, the RC is significantly affected from the standpoint of its structural stability that the compressive strength and elastic modulus is reduced by fire. Especially, high strength concrete and lightweight aggregate concrete is occurred serious fire performance deterioration by explosive spalling. Thus, this study is concerned with explosive spalling of lightweight concrete using structural lightweight aggregate. From the experimental test result, lightweight aggregate concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.

  • PDF

Palm oil industry's bi-products as coarse aggregate in structural lightweight concrete

  • Huda, Md. Nazmul;Jumaat, Mohd Zamin;Islam, A.B.M. Saiful;Darain, Kh Mahfuz ud;Obaydullah, M.;Hosen, Md. Akter
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.515-526
    • /
    • 2017
  • Recent trend is to use the lightweight concrete in the construction industry because it has several advantages over normal weight concrete. The Lightweight concrete can be produced from the industrial waste materials. In South East Asian region, researchers are very keen to use the waste materials such as oil palm shell (OPS) and palm oil clinker (POC) from the palm oil producing industries. Extensive research has been done on lightweight concrete using OPS or POC over the last three decades. In this paper the aggregate properties of OPS and POC are plotted in conjunction with mechanical and structural behavior of OPS concrete (OPSC) and POC concrete (POCC). Recent investigation on the use of crushed OPS shows that OPSC can be produced to medium and high strength concrete. The density of OPSC and POCC is around 20-25% lower than normal weight concrete. Generally, mechanical properties of OPSC and POCC are comparable with other types of lightweight aggregate concrete. It can be concluded from the previous study that OPSC and POCC have the noteworthy potential as a structural lightweight concrete.

제지 슬러지 소각재를 이용한 소성 경량골재의 제조 (Manufacturing of Sintered Lightweight Aggregate using Paper Mill Sludge Ash)

  • 문경주;김재신;소양섭
    • 콘크리트학회논문집
    • /
    • 제13권2호
    • /
    • pp.114-122
    • /
    • 2001
  • 본 연구는 제지 슬러지 소각재의 보다 근본적이고 장기적인 처리방안으로 인공경량골재를 제조하여 고부가 자원으로의 개발과 대량으로 처리할 수 있는 기술에 관한 연구이다. 따라서 배합비, 성형 및 소성조건을 달리하여 골재를 제조하고 이에 따른 골재의 물성을 평가하고자 하였다. 실험결과 제지 슬러지 소각재 단독으로는 인공경량골재의 원료로 부적합하여 점토, 플라이 애쉬 등의 부원료의 첨가가 필요하였으며, 적정 배합비는 제지 슬러지 소각재 30~50 % , 점토 30~50 %, 플라이애쉬 0~40 %, 제지 슬러지 0~10 %, 산화철 2~3% 이었다. 또한 본 배합비를 이용하여 절건 비중이 약 0.6~l.4의 다양한 경량골재 제조가 가능하였다. 골재의 물성 시험 결과 10% 세립치 파쇄강도 및 흡수율은 5~10 ton 및 10~20%로 나타나 골재의 물성은 비구조용 및 구조용 인공경량골재로 적합하였으며, 외국제품에 비해서도 거의 동등한 물성을 나타내었다.