• Title/Summary/Keyword: structural integrity estimation

Search Result 61, Processing Time 0.038 seconds

Study on Evaluation of Structural Integrity for Small Aircraft Tail (소형 항공기 미익부 구조 건전성 평가에 관한 연구)

  • Lee, Muhyoung;Park, Illkyung;Kim, Sungjoon;Ahn, Sukmin
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.28-34
    • /
    • 2012
  • Structural integrity evaluation is important item in the aircraft certification. Recently, it is designed for limit load, material weakness about fatigue and corrosion, damage by bird strike in flight to evaluate structural integrity of aircraft. And static/fatigue analysis are performed to secure structural integrity, it was verified by static and fatigue tests. To evaluate the structural integrity of small aircraft tail, structural integrity was calculated by the finite element analysis. In the present study, finite element analysis are performed to pick out load cases in flight occurrence, and secure margin of safety to evaluate structural integrity of KC-100 tail unit. The proprieties of finite element analysis results are compared with the static structure test results. The estimation process of structural integrity for small aircraft tail may help the design.

A Study on the Structural Integrity of an Auxiliary Feed Water Pump in a Nuclear Power Plant (원자력 발전소 보조급수펌프의 구조 건전성에 관한 연구)

  • Kim, Chae-Sil;Cho, Bang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.42-48
    • /
    • 2014
  • The auxiliary-feed-water pump (AFWP) used to supply water during a station black out situation at nuclear power plants should meet the seismic qualification regulations stipulated in IEEE Std 323 and 344, so as to withstand earthquakes or dangerous situations. Here, we establish a model for the estimation of the structural integrity of this type of pump. If the natural frequency that results from a modal analysis is less than 33 Hz, we adopt a dynamic analysis, instead of a static analysis. A dynamic analysis was carried out taking into consideration seismic conditions such as the floor response spectra (FRS), an operation-base earthquake (OBE), and a safe-shutdown earthquake (SSE). Finally, an analytical estimation of the structural integrity of an AFWP is made through a comparison of calculated values and allowable values. If the result is less than the allowable stress, the pump is deemed to have good structural integrity. In addition, future studies will involve a stability check for rotor accidents that may occur during the operation of the pump.

Study on Structural Integrity of Bearingless Main Rotor Hub System of Helicopter (헬리콥터 무베이링 메인 로터 허브 시스템의 구조 건전성에 관한 연구)

  • Lee, Mu-Hyoung;Park, Ill-Kyoung;Kim, Sung-Joon;Hwang, In-Hee;Kim, Tae-Joo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Rotor system is a very important part which produce lift, thrust and control force in helicopter. Component of rotor system must have structural integrity for applied load. The estimation of structural integrity is regarded greatly as important in aerospace field. In this study, the process of structural analysis performed for bearingless main rotor system of helicopter. The composite flexbeam and torque tube of bearingless main rotor are very thick, so 3D layered soild elements of MSC.PATRAN were used to get the finite element analysis results. To estimate structural integrity, non-linear static analysis considering geometric non-linearity is performed. In addition, detailed finete element analysis and non-linear static analysis are performed to consider the stress concentration for fitting effect and contact surface. The estimation process of structural integrity for bearingless main rotor system of helicopter may help the design.

Estimation of Fatigue Integrity for Small Aircraft Engine Mount Strut (소형 항공기 엔진 마운트 구조물의 피로 건전성 평가)

  • Lee, Mu-Hyoung;Park, Ill-Kyoung;Kim, Sung-Joon;Ahn, Seok-Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.58-66
    • /
    • 2011
  • The estimation of fatigue integrity is very important for aerospace structures such as engine mount strut. The reason is that the fatigue integrity is essential analysis process to establish the structural stability in aerospace field. Therefore, in this paper, the process of fatigue analysis and test was performed for engine mount strut to prove the structural fatigue integrity. First of all, the fatigue load spectrum is constructed by considering the small aircraft operating condition. Fatigue analysis is done for the cluster near the welding zone which may have F.C.L.(fracture critical location). The fatigue life of engine mount strut was estimated by the Miner's rule which is the damage summation method. Finally, Fatigue test is performed to verify the fatigue integrity. The estimation process of fatigue integrity for engine mount strut of small aircraft may help the design.

Probabilistic Estimation of the Structural Integrity of an Electric Car Bogie Frame (전동차 대차 프레임의 확률론적 구조 건전성 평가)

  • Goo, Byeong-Choon;Seo, Jung-Won;Kim, Nam-Po;Kim, Won-Gyung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.161-165
    • /
    • 2001
  • Bogie frame of the electric car is an important structural member for the support of vehicle loading. In general, more than 25 years' durability is necessary. Much study has been carried out for the prediction of the structural integrity of the bogie frame in experimental and theoretical domains. One of the useful methods is reliability-based approach. The objective of this paper is to estimate the structural integrity of the bogie frame of an electric car, which is under the running test. We used two approachs. In the first approach probabilistic distribution of S-N curve is used. In the second approach, limit state function is used.

  • PDF

Integrity Estimation of The RC Members Damaged by Corrosion of Main Rebar (철근이 부식된 철근콘크리트 구조물의 건전도 평가기술)

  • Kwon, Dae Hong;Yoo, Suk Hyeong;Noh, Sam Young
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.141-146
    • /
    • 2007
  • It is necessary to guarantee the safety, serviceability and durability of reinforced concrete structures over their service life. However, concrete structures represent a decrease in their durability due to the effects of external environments according to the passage of time, and such degradation in durability can cause structural degradation in materials. In concrete structures, some degradations in durability increase the corrosion of embedded rebars and also decrease the structural performance of materials. Thus, the structural condition assessment of RC materials damaged by corrosion of rebars becomes an important factor that judges needs to apply restoration. In order to detect the damage of reinforced concrete structures, a visual inspection, a nondestructive evaluation method(NDE) and a specific loading test have been employed. However, obscurities for visual inspection and inaccessible members raise difficulty in evaluating structure condition. For these reasons, detection of location and quantification of the damage in structures via structural response have been one of the very important topics in system identification research. The main objective of this project is to develope a methodologies for the damage identification via static responses of the members damaged by durability. Six reinforced concrete beams with variables of corrosion position and corrosion width were fabricated and the damage detections of corroded RC beams were performed by the optimization and the conjugate beam methods using static deflection. In results it is proved that the conjugate beam method could predict the damage of RC members practically.

Elastic-plastic Fracture Mechanics Analyses for Burst Pressure Prediction of Through-wall Cracked Tubes (관통균열 세관의 파열압력 예측을 위한 탄소성 파괴역학 해석)

  • Chang Yoon-Suk;Moon Seong-In;Kim Young-Jin;Hwang Seong-Sik;Kim Joung-Soo;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1361-1368
    • /
    • 2005
  • The structural and leakage integrity of steam generator tubes should be sustained all postulated loads with appropriate margin even if a crack is present. During the past three decades, for effective integrity evaluation, several limit load solutions have been used world-widely. However, to predict accurately load carrying capacities of specific components under different conditions, the solutions have to be modified by using lots of experimental data. The purpose of this paper is to propose a new burst pressure estimation scheme based on fracture mechanics analyses for steam generator tube with an axial or circumferential through-wall crack. A series of three dimensional elastic-plastic finite element analyses were carried out and, then, closed-form estimation equations with respect to both J-integral and crack opening displacement were derived through reference stress method. The developed engineering equations were utilized for structural integrity evaluation and the resulting data were compared to the corresponding ones fiom experiments as well as limit load solutions. Thereafter, since the effectiveness was proven by promising results, it is believed that the proposed estimation scheme can be used as an efficient tool for integrity evaluation of cracked steam generator tubes.

Integrity Assessment of Asphalt Concrete Pavement System Considering Uncertainties in Material Properties (재료 물성치의 불확실성을 고려한 포장구조체의 건전성 평가)

  • Yi, Jin-Hak;Kim, Jae-Min;Kim, Young-Sang;Moon, Sung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.49-54
    • /
    • 2007
  • Structural integrity assessment technique for pavement system is studied considering the uncertainties among the material properties. The artificial neural networks technique is applied for the inverse analysis to estimate the elastic modulus based on the measured deflections from the FWD test. A computer code based on the spectral element method was developed for the accurate and fast analysis of the multi-layered soil structures, and the developed program was used for generating the training and testing patterns for the neural network. Neural networks was applied to estimate the elastic modulus of pavement system using the maximum deflections with and without the uncertainties in the material properties. It was found that the estimation results by the conventiona1 neural networks were very poor when there exist the uncertainties and the estimation results could be significantly improved by adopting the proposed method for generating training patterns considering the uncertainties among material properties.

  • PDF

Probabilistic Estimation of the Fatigue Strength of an Electric Car Bogie Frame (전동차 대차 프레임의 확률론적 피로강도 평가)

  • 서정원;구병춘;김남포;유원희;정흥채
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.261-266
    • /
    • 2001
  • Bogie frame of the electric car is an important structural member for the support of vehicle leading. In general, more than 25 years' durability is necessary. A lot of study has been carried out for the prediction of the structural integrity of the bogie frame in experimental and theoretical domains. One of the useful methods is reliability-based approach. The objective of this paper is to estimate the structural integrity of the bogie frame of an electric car, which is under the running test. We used two approachs. In the first approach probabilistic distribution of S-N curve is used. In the second approach, limit state function is used.

  • PDF