• Title/Summary/Keyword: structural impact response characteristics

Search Result 84, Processing Time 0.025 seconds

The impact of successive earthquakes on the seismic damage of multistorey 3D R/C buildings

  • Kostinakis, Konstantinos;Morfidis, Konstantinos
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • Historical earthquakes have shown that successive seismic events may occur in regions of high seismicity. Such a sequence of earthquakes has the potential to increase the damage level of the structures, since any rehabilitation between the successive ground motions is practically impossible due to lack of time. Few studies about this issue can be found in literature, most of which focused their attention on the seismic response of SDOF systems or planar frame structures. The aim of the present study is to examine the impact of seismic sequences on the damage level of 3D multistorey R/C buildings with various structural systems. For the purposes of the above investigation a comprehensive assessment is conducted using three double-symmetric and three asymmetric in plan medium-rise R/C buildings, which are designed on the basis of the current seismic codes. The buildings are analyzed by nonlinear time response analysis using 80 bidirectional seismic sequences. In order to account for the variable orientation of the seismic motion, the two horizontal accelerograms of each earthquake record are applied along horizontal orthogonal axes forming 12 different angles with the structural axes. The assessment of the results revealed that successive ground motions can lead to significant increase of the structural damage compared to the damage caused by the corresponding single seismic events. Furthermore, the incident angle can radically alter the successive earthquake phenomenon depending on the special characteristics of the structure, the number of the sequential earthquakes, as well as the distance of the record from the fault.

An Experimental Study on the Static and Dynamic Characteristics of High Speed Air Foil Bearings (고속 공기 포일 베어링의 정적${\cdot}$동적 특성에 관한 실험적 연구)

  • Jo Jun-Hyeon;Lee Yong-Bok;Kim Chang-Ho;Rhim Yoon-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.186-194
    • /
    • 2004
  • Experiments were conducted to determine the structural static and dynamic characteristics of air foil bearings. The housing of the bearing on the journal was driven by an impact hammer which was used to simulate dynamic forces acting on the bump loll with various leading condition. Two different bump foils (Cu-coated bump and viscoelastic bump) were tested and the static and dynamic coefficients of two bump foils compared, based on the experimental measurements for a wide range of operating conditions. The static and dynamic characteristics of air foil bearings were extracted 0rpm the frequency response function by least square method and IV(Instrumental Variable) method. The experiment was tested at 0rpm and $10,000\~16,000rpm$, and loaded on $50\~150N$. From the test results, the possibility of the application of high load and high speed condition is suggested.

  • PDF

In-situ dynamic loading test of a hybrid continuous arch bridge

  • Gou, Hongye;Li, Liang;Hong, Yu;Bao, Yi;Pu, Qianhui
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.809-817
    • /
    • 2021
  • In this study, the dynamic behavior of a three-span hybrid continuous arch bridge under vehicle loading is investigated. The natural vibration characteristics of the bridge were analyzed through pulsation test. In the dynamic loading test, the vibrations of the bridge under different truck speeds and different pavement conditions were tested, and time histories of deflection and acceleration of the bridge were measured. Based on the dynamic loading test, the impact coefficient was analyzed. The results indicate that the pavement smoothness had more impacts on the vibration of the bridge than the truck's speed. The vertical damping of the bridge under the excitation of the trucks is larger than the transverse damping. Resonance occurs at the side span of the bridge under a truck at 10 km/h.

Mitigating the Shocks: Exploring the Role of Economic Structure in the Regional Employment Resilience

  • Kiseok Song;Ilwon Seo
    • Asian Journal of Innovation and Policy
    • /
    • v.12 no.3
    • /
    • pp.323-344
    • /
    • 2023
  • This study investigates the resilient structural characteristics of a region by assessing the impact of the financial crisis. Utilizing panel data at the prefecture level for metropolitan cities across pre-shock (2006-2008), shock (2009), and post-shock (2010-2019) periods, we calculated an employment resilience index by combining the resistance and recovery indices. The panel logit regression measures the influences of the region's industrial structure and external economic factors in response to the global financial crisis. The results revealed that the diversity index of industries contributed to the post-shock recovery bounce-back. Additionally, the presence of large firms and industrial clusters within the region positively contributed to economic resilience. The specialization and the proportion of manufacturing industries showed negative effects, suggesting that regions overly reliant on manufacturing-centered specialization might be vulnerable to external shocks. Furthermore, excessive capital outflows for market expansion were found to have a detrimental impact on regional economic recovery.

Dynamic Behaviors of an Impact System under Randomly Perturbed Harmonic Excitation by the Path-Integral Solution Procedure (Path-Integral Solution을 이용한 랜덤동요된 조화가진력을 받는 임팩트시스템의 거동분석)

  • 마호성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.83-91
    • /
    • 2004
  • Nonlinear system responses of an impact system under randomly perturbed harmonic excitations are predicted in the probability domain by adopting the semi-analytical procedure previously developed. The semi-analytical procedure is obtained by solving the Fokker-Planck equation corresponding to the stochastic differential equation of the given impact system by utilizing the path-integral solution. The evolutionary joint probability density functions are generated by using the method, and the characteristics of nonlinear dynamic response behaviors of the system are examined. Noise effects on the responses are also examined. It Is found that the semi-analytical method can provides the accurate information of the responses via the joint probability functions for the impact system. It is found that the noises weaken and eventually terminate the chaos in the responses, but it is also found that the chaotic signatures reside in the presence of the external noise with relatively high intensity. The joint probability density function shows that the ensemble of the system responses are weakly stationary.

Seismic Response Characteristics of the Bridges with Motion-Limiting Devices (이동제한장치가 있는 교량의 지진응답특성)

  • 이지훈;전귀현
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.331-340
    • /
    • 1998
  • 본 연구에서는 이동제한장치가 있는 연속교의 지진응답특성을 고찰하였다. 일점고정연속교에 있어서 이동제한장치는 교각이 탄성거동을 하는 경우 교축방법 수평력 분산기능이 있으며 교각하부에 소성힌지가 발생하거나 내진분리베어링이 있는 경우에는 최대변위 및 비탄성거동에 따른 잔류변위제한에 매우 효과적이다. 상부구조와 이동제한장치의 충돌시 발생하는 충격력은 완충재의 사용으로 상당히 감소시킬 수 있다. 이동제한장치의 설치위치 및 이격거리는 이동제한장치가 설치될 하부구조의 강성 및 강도와 온도변화, 급제동력, 작은 지진발생시 충돌여부, 신축이음장치유간 등을 고려하여 결정되어야 한다.

  • PDF

Probabilistic seismic risk assessment of a masonry tower considering local site effects

  • Ozden Saygili
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.191-201
    • /
    • 2024
  • A comprehensive probabilistic seismic hazard analysis was carried out in Istanbul to examine the seismotectonic features of the region. The results showed that earthquakes can trigger one another, resulting in the grouping of earthquakes in both time and space. The hazard analysis utilized the Poisson model and a conventional integration technique to generate the hazard curve, which shows the likelihood of ground motion surpassing specific values over a given period. Additionally, the study evaluated the impact of seismic hazard on the structural integrity of an existing masonry tower by simulating its seismic response under different ground motion intensities. The study's results emphasize the importance of considering the seismotectonic characteristics of an area when assessing seismic hazard and the structural performance of buildings in seismic-prone regions.

Dynamic assessment of the seismic isolation influence for various aircraft impact loads on the CPR1000 containment

  • Mei, Runyu;Li, Jianbo;Lin, Gao;Zhu, Xiuyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1387-1401
    • /
    • 2018
  • An aircraft impact (AI) on a nuclear power plant (NPP) is considered to be a beyond-design-basis event that draws considerable attention in the nuclear field. As some NPPs have already adopted the seismic isolation technology, and there are relevant standards to guide the application of this technology in future NPPs, a new challenge is that nuclear power engineers have to determine a reasonable method for performing AI analysis of base-isolated NPPs. Hence, dynamic influences of the seismic isolation on the vibration and structural damage characteristics of the base-isolated CPR1000 containment are studied under various aircraft loads. Unlike the seismic case, the impact energy of AI is directly impacting on the superstructure. Under the coupled influence of the seismic isolation and the various AI load, the flexible isolation layer weakens the constraint function of the foundation on the superstructure, the results show that the seismic isolation bearings will produce a large horizontal deformation if the AI load is large enough, the acceleration response at the base-mat will also be significantly affected by the different horizontal stiffness of the isolation bearing. These concerns require consideration during the design of the seismic isolation system.

Vibration Reduction Effect and Structural Behavior Analysis for Column Member Reinforced with Vibration Non-transmissible Material (진동절연재로 보강된 기둥부재의 진동저감효과 및 구조적 거동분석)

  • Kim, Jin-Ho;Yi, Na-Hyun;Hur, Jin-Ho;Kim, Hee-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • For elevated railway station on which track is connected with superstructure of station, structural vibration level and structure-borne-noise level has exceeded the reference level due to structural characteristics which transmits vibration directly. Therefore, existing elevated railway station is in need of economical and effective vibration reduction method which enable train service without interruption. In this study, structural vibration non-transmissible system which is applied to vibroisolating material for column member is developed to reduce vibration. That system is cut covering material of the column section using water-jet method and is installed with vibroisolating material on cut section. To verify vibration reduction effect and structural performance for structural vibration non-transmissible system, impact hammer test and cyclic lateral load test are performed for 1/4 scale test specimens. It is observed that natural period which means vibration response characteristics is shifted, and damping ratio is increased about 15~30% which means that system is effective to reduce structural vibration through vibration test. Also load-displacement relation and stiffness change rate of the columns are examined, and it is shown that ductility and energy dissipation capacity is increased. From test results, it is found that vibration non-transmissible system which is applied to column member enable to maintains structural function.

Sensitivity Analysis of Drought Impact Factors Using a Structural Equation Model and Bayesian Networks (구조방정식모형과 베이지안 네트워크를 활용한 가뭄 영향인자의 민감도 분석)

  • Kim, Ji Eun;Kim, Minji;Yoo, Jiyoung;Jung, Sungwon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • Drought occurs extensively over a long period and causes great socio-economic damage. Since drought risk consists of social, environmental, physical, and economic factors along with meteorological and hydrological factors, it is important to quantitatively identify their impacts on drought risk. This study investigated the relationship among drought hazard, vulnerability, response capacity, and risk in Chungcheongbuk-do using a structural equation model and evaluated their impacts on drought risk using Bayesian networks. We also performed sensitivity analysis to investigate how the factors change drought risk. Overall results showed that Chungju-si had the highest risk of drought. The risk was calculated as the largest even when the hazard and response capacity were changed. However, when the vulnerability was changed, Eumseong-gun had the greatest risk. The sensitivity analysis showed that Jeungpyeong-gun had the highest sensitivity, and Jecheon-si, Eumseong-gun, and Okcheon-gun had highest individual sensitivities with hazard, vulnerability, and response capacity, respectively. This study concluded that it is possible to identify impact factors on drought risk using regional characteristics, and to prepare appropriate drought countermeasures considering regional drought risk.