• Title/Summary/Keyword: structural friction

Search Result 555, Processing Time 0.031 seconds

Design of a bracing-friction damper system for seismic retrofitting

  • Lee, Sung-Kyung;Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won;Lee, Sang-Hyun;Kim, Jinkoo
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.685-696
    • /
    • 2008
  • This paper deals with the numerical model of a bracing-friction damper system and its deployment using the optimal slip load distribution for the seismic retrofitting of a damaged building. The Slotted Bolted Connection (SBC) type friction damper system was tested to investigate its energy dissipation characteristic. Test results coincided with the numerical ones using the conventional model of a bracing-friction damper system. The placement of this device was numerically explored to apply it to the assumed damaged-building and to evaluate its efficiency. It was found by distributing the slip load that minimizes the given performance indicies based on structural response. Numerical results for the damaged building retrofitted with this slip load distribution showed that the seismic design of the bracing-friction damper system under consideration is effective for the structural response reduction.

The effects of peak ground velocity of near-field ground motions on the seismic responses of base-isolated structures mounted on friction bearings

  • Tajammolian, H.;Khoshnoudian, F.;Talaei, S.;Loghman, V.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1259-1281
    • /
    • 2014
  • This research has been conducted in order to investigate the effects of peak ground velocity (PGV) of near-field earthquakes on base-isolated structures mounted on Single Friction Pendulum (SFP), Double Concave Friction Pendulum (DCFP) and Triple Concave Friction Pendulum (TCFP) bearings. Seismic responses of base-isolated structures subjected to simplified near field pulses including the forward directivity and the fling step pulses are considered in this study. Behaviour of a two dimensional single story structure mounting on SFP, DCFP and TCFP isolators investigated employing a variety range of isolators and the velocity (PGV) of the forward directivity and the fling step pulses as the main variables of the near field earthquakes. The maximum isolator displacement and base shear are selected as main seismic responses. Peak seismic responses of different isolator types are compared to emphasize the efficiency of each one under near field earthquakes. It is demonstrated that rising the PGVs increases the isolator displacement and base shear of structure. The effects of the forward directivity are greater than the fling step pulses. Furthermore, TCFP isolator is more effective to control the near field effects than the other friction pendulum isolators are. This efficiency is more significant in pulses with longer period and greater PGVs.

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.389-394
    • /
    • 2011
  • Existing FPS(Friction Pendulum System) is isolation system which is possible to isolate structures by pendulum characteristic from ground vibration. Structural natural frequency could be decided by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(Cone-type Friction Pendulum Bearing System) was developed for controlling the response acceleration and displacement by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, Divergence of response could be controlled by CFPBS which had constantly changing natural frequency with low modal participation factor in wide-range. In this study, Seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

  • PDF

Trolley Adaptability of Membrane Retractable Roof Under Vertical Load Considering Friction of Various Materials (다양한 재료의 마찰계수를 고려한 중소규모 연성 개폐식 트롤리의 수직하중에 대한 적용성 평가)

  • Kim, Yun-Jin;Lee, Seung-Jae;Lee, Yu-Han;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.83-89
    • /
    • 2016
  • Middle size of membrane retractable roof is under 25m span which consists of various moving systems. Trolley is the system that leads the membrane to parking place, transferring the load from the membrane to structural cable. When membrane closes roof completely, thus, structural behavior of trolley, which may contain various material with different friction coefficients, should be investigated by vertical load. Nummerical simulation of trolley prototypes, in this research, was performed by incrementation of vertical load. Consequently, this paper studied proper friction characteristics and provided the effective inner materials of trolley.

Efficient treatment of rubber friction problems in industrial applications

  • Hofstetter, K.;Eberhardsteiner, J.;Mang, H.A.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.517-539
    • /
    • 2006
  • Friction problems involving rubber components are frequently encountered in industrial applications. Their treatment within the framework of numerical simulations by means of the Finite Element Method (FEM) is the main issue of this paper. Special emphasis is placed on the choice of a suitable material model and the formulation of a contact model specially designed for the particular characteristics of rubber friction. A coupled thermomechanical approach allows for consideration of the influence of temperature on the frictional behavior. The developed tools are implemented in the commercial FE code ABAQUS. They are validated taking the sliding motion of a rubber tread block as example. Such simulations are frequently encountered in tire design and development. The simulations are carried out with different formulations for the material and the frictional behavior. Comparison of the obtained results with experimental observations enables to judge the suitability of the applied formulations on a structural scale.

Study on Friction Effect for Optical Image Stabilization Actuator with Ball Bearing (볼베어링 구동방식을 적용한 광학식 손떨림 보정장치의 마찰특성 연구)

  • Kim, Choong;Song, Myeong-Gyu;Son, Dong-Hun;Park, Kyoung-Su;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.2
    • /
    • pp.74-78
    • /
    • 2010
  • In this paper, 2-axis driving mechanism, which uses voice coil motor (VCM), is proposed to measure the friction force. The proposed VCM actuator consists of two parts; structural part and magnetic circuit part. Structural part is simplified to perform the friction experiments. Magnetic circuit part is composed of two parts. The experiments are accomplished by changing the mass of moving part. Through the experiments, optimal dimension is selected. Finally, the experimental results are verified and the optimal case is applied to the 2-axis driving mechanism, optical image stabilization actuator.

Seismic Fragility Analysis of a LNG Tank with Friction Pendulum System of Various Friction Coefficient (마찰재 물성변화에 따른 마찰진자시스템을 적용한 LNG 탱크의 지진취약도 분석)

  • Moon, Ji-Hoon;Kim, Ji-Su;Lee, Tae-Hyung;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.95-102
    • /
    • 2017
  • The friction pendulum system(FPS) is a kind of seismic isolation devices for isolating structures from an earthquake. To analyze the effect of friction materials used in the friction pendulum system, fragility analysis of LNG tank with seismic isolation system was conducted. In this study, titanium dioxide($TiO_2$) nanoparticles were incorporated into polyvinylidene fluoride(PVDF) matrix to produce friction materials attached to the FPS. The base moment of the concrete outer tank and the acceleration of the structure were evaluated from different mixing ratios of constituents for the friction materials. The seismic fragility curves were developed based on two types of limit state. It is confirmed that evaluation of combined fragility curves with several limit states can be applied to select the optimum friction material satisfying the required performance of the FPS for various infrastructure.

Investigation on friction stir welding and friction stir processing for 5456-H116 (5456-H116 합금에 대한 마찰교반 용접과 마찰교반 프로세싱에 관한 연구)

  • Kim, Seong-Jong;Park, Jae-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.242-243
    • /
    • 2009
  • Friction stir welding and friction stir processing is a new solid state processing technique for ioining and micro..structural modification in metallic materials. It has been applied not only joining for light metals but also modification of the microstructure to enhance mechanical properties. In thin study, we investigated the mechanical properties for applied friction stir welding and processing under various parameters such as probe diameter, probe type, traveling speed and rotating speed for 5456-H116 AI allov. As a result of experiments, optimum condition of friction stir welding is traveling speed of 15mm/min, rotating speed of 500RPM at 6mm diameter probe. Moreover, in the case of friction stir processing, the optimum condition is traveling speed of 15mm/min, rotating speed of 250RPM at full screw probe. As above mentioned, the mechanical characteristics enhanced with the decreasing of traveling speed and the increasing of friction areas because of plastic flow due to high friction heat. These result can be used as reference data for ship repairment.

  • PDF

Study of Structural Design Method of Friction Pendulum System for Fail Safe of a Sky-Bridge (스카이브릿지의 안전성확보를 위한 FPS 설계방법에 대한 연구)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3502-3507
    • /
    • 2013
  • If a sky-bridge is rigidly connected to adjacent buildings, the irregularity of the connected structures is increased resulting in providing a worse seismic behavior. Therefore, a friction pendulum system (FPS) or lead rubber bearing (LRB) is frequently used for the connection system between a sky-bridge and building structures. These connection systems should be carefully designed to prevent a skyfall of a sky-bridge subjected to severe seismic loads. In this paper, the inevitable structural design procedures for a sky-bridge connection system using a friction pendulum system without uplift resistance capacity have been investigated. To this end, Nuri Dream Square building structure is used as a example structure. The structural design process of a friction pendulum system for fail safe of a sky-bridge has been proposed in this paper by evaluating structural responses of the sky-bridge and building structures subjected to earthquake loads.

Vibration Control for a Single Degree of Freedom Structure Using Active Friction Slip Braces (능동 조임 마찰 가새로 보강한 단자유도 구조물의 응답)

  • Lee, Jin-Ho;Zekai, Akbay;Kim, Jung-Gil;Oh, Sang-Gyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.131-138
    • /
    • 2006
  • Structural bracing concept equipped with a new and efficient friction based energy dissipation device is referred to Friction SliP Brace (FSB) where the behavior of the brace components is elastic until the axial resistant force in the brace exceeds the friction force developed at the frictional interface of the device. In this study, the FSB concept is modified and new type of hybrid energy dissipation device, the Active Friction SliP Braces (AFSB), is described. The FSB is by far improved in the AFSB by inclusion of an active clamping mechanism on the friction interface. The clamping action regulated by the developed algorithm is altered during the response of the building. The results indicate that the action of dissipating vibrational energy in the AFSB impacts on the response at later cycles by keeping the drift amplitudes at much lower levels, revealing overshooting problem due to its early slippage. Providing predetermined constant incremental strengths to the building by AFSB medium improves response by reducing drift amplitudes and base shear under small and medium amplitude ground accelerations.