• Title/Summary/Keyword: structural fire resistance

Search Result 261, Processing Time 0.019 seconds

Characteristics of HFIX Insulated Wire Sheaths Contaminated by Pollutants (오염물질에 따른 HFIX 절연전선 피복의 특성 변화에 관한 연구)

  • Choi, Su-Gil;Nam, Yeong-Jae;Jin, Se-Young;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.8-17
    • /
    • 2020
  • In this study, the characteristics of HFIX insulated wire sheaths contaminated by pollutants were examined. KS C IEC 60811-1-3 standard was followed in performing the water-resistance wire tests. Pollutants were selected, and the specimens were exposed to the pollutants for a maximum duration of four weeks. The maximum tensile load and the elongation rate were measured each week. As the period of pollution exposure increased, the maximum tensile load of the specimens decreased by 6.22% and 6.52% at room temperature and high temperature, respectively, and 19.94% for specimens coated with a rust-proof lubricant. The elongation rate also decreased rapidly, such that the reductions in the properties of the sheath were significant. From the analysis of the surfaces using a scanning microscope, as the contamination period increased, structural changes such as perforation, split, and melting occurred, and the mechanical properties of the specimens decreased. Therefore, it is necessary to develop and follow an inspection cycle and periodically carry out repairs to prevent the deterioration of insulated wires.

Evaluation of Spalling Characteristics and Fire Resistance Fiber-Entrained Mixed Cement Concrete at Ultra-High Temperatures (섬유가 혼입된 혼합시멘트 콘크리트의 초고온에서의 폭렬특성 및 내화성능 평가)

  • Jun-Hwan Oh;Ju-Hyun Cheon;Man-Soo Lee;Sung-Won Yoo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.23-29
    • /
    • 2023
  • The goal of this study is to evaluate the bursting characteristics and fire resistance performance of mixed cement concrete containing fibers at very high temperatures. For this purpose, FA-based, Slag-based, and each mix according to the amount of fiber mixed were heated to room temperature, 150℃, 300℃, 600℃, and 900℃, and then the burst shape, compressive strength, and elastic modulus were measured and evaluated. As a result of the experiment, it was found that relatively more surface damage occurred in FA-based specimens when heated at ultra-high temperatures than in slag-based specimens, and there was a difference between the mix without fibers and the mix with fibers when heated at ultra-high temperatures, that is, at 900℃. In the mix without fibers, a decrease in strength of more than 5% occurred. In addition, the elastic modulus also showed the same phenomenon as the compressive strength, and in particular, the decrease in elastic modulus was found to be greater than the amount of decrease in compressive strength. Meanwhile, estimation equations for compressive strength and elastic modulus according to heating temperature were statistically proposed.

Spalling Prevention of High Strength concrete Corresponding to the Various Heating Curves (가열온도곡선 변화에 따른 고강도 콘크리트의 폭렬방지특성)

  • Han, Cheon-Goo;Pei, Chang-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.127-134
    • /
    • 2009
  • This study investigated their properties of spalling resistance and residual compressive strength after fire test corresponding to various ISO, RABT heating curves, and contents of hybrid organic fiber of high strength concrete. The results were summarized as following. As fundamental characters of concrete with hybrid organic fiber, the flowability was directly declined as the increase of fiber contents, and air contents were decreased or increased a little bit, but there was not big difference. The compressive strength was gradually declined sluggishly at 28 days. As properties of fire resistance, in case of RABT heating curves, compare with ISO heating curves a spalling aspect showed till range that has much contents of hybrid organic fiber, but they are mostly peeling spalling, which means spalling aspect didn't happen to inside. In conclusion, in case of W/B 25% high strength concrete, the spalling was prevented over 0.04% of contents of fiber at ISO heating curve and over 0.10% of contents of fiber at the RABT heating curve. In case of spalling was prevented, mass reduction rate according to the change of heating temperature curves showed around 7% at ISO heating curves and around 9% at RABT heating curves. The residual compressive strength rate corresponding to the change of heating temperature curves showed 50%~60% at ISO heating temperature curves and 30%~35% at RABT heating temperature curves in case of spalling was prevented.

Penetration Fracture Characteristics of Orthotropic CFRP Laminates Shells according to Curvature (곡률이 다른 직교이방성 CFRP 적층쉘의 관통파괴특성)

  • Yang, Yong Jun;Pyeon, Seok Beom;Cha, Cheon Seok;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.6-11
    • /
    • 2016
  • CFRP composite laminates are widely used as structural materials for airplanes, automobile and aerospace vehicles because of their high strength and stiffness. This study aims to examine an effect of curvature on the penetration fracture characteristic of an orthotropic composite laminated shell. For the purpose, we manufactured orthotropic CFRP shell specimen with different curvatures, and conducted a penetration test using an air-gun. Those specimens were prepared to varied curvature radius(${\infty}$, 200mm, 150mm and 100mm)and were stacked to $[O^{\circ}{_3}/90^{\circ}{_3}]_s$. When the specimen is subjected to transverse impact by a steel sphere(${\Phi}10$), the velocity of steel sphere was measured both before and after impact by determining the time for it to pass two ball-screen sensors located a known distance apart. As the curvature increases, the absorption energy and the critical penetration energy increased linearly because the resistance to the bending moment. Patterns of cracks caused by the penetration of CFRP laminated shells included fiber breakage, lamina fracture, matrix crack interlaminar crack and intralaminar crack.

One-Dimensional Heat Transfer Model to Predict Temperature Distribution in Voided slabs subjected to fire (화재 시 중공슬래브의 온도분포 예측을 위한 1방향 열전달 모델)

  • Chung, Joo-Hong;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • In general, a reinforced concrete slabs are known to have a high fire resistance performance due to thermal properties of concrete materials. However, according to previous research, the thermal behavior of voided slabs is reported to be different from that of conventional RC solid slabs, and the differences seem to be caused by the air layer formed inside the voided slab. Therefore, it is difficult to estimate the temperature distribution of the voided slab under fire by using the existing methods that do not take into account the air layer inside the voided slab. In this study, a numerical analysis model was proposed to estimate the temperature distribution of voided slabs under fire, and evaluated. Heat transfer of slabs under fire is generally caused by conduction, convection and radiation, and time-dependent temperature changes of slab can be determined considering these phenomena. This study proposed a numerical method to estimate the temperature distribution of voided slabs under fire based on a finite difference method in which a cross-section of the slab is divided into a number of layers. This method is also developed to allow consideration of heat transfer through convection and radiation in air layer inside of slabs. In addition, the proposed model was also validated by comparison with the experimental results, and the results showed that the proposed model appropriately predicts the temperature distribution of voided slabs under fire.

Development of Damage Estimation Method using Sensor of Multiple Function in RC Beam (철근 콘크리트 보에서의 다기능 센서를 이용한 손상 추정법 개발)

  • Kim, Ie-Sung;Park, Kang-Geon;Kim, Wha-Jung
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.184-188
    • /
    • 2008
  • Performance degradation of concrete structures is generally caused by structural deteriorations, such as cracks. It may result in serious defects of concrete structures. Methods of damage detection are used a visual angle of human or non-destructive test, and they are using various sensors. Problems of crack damage detection are occurred to directions of cracks by using 1 axial type of accelerometer in concrete element. In addition, these sensors are not used to occurring fire in RC building. Thermocouple sensors are able to using measurement of temperature in fire, and then deformations of main element and structures are not used. In this study, fundamental studies for development of multiple function sensor using 3 axial type of accelerometer and electric resistance property of thermocouple sensors are discussed estimation to stability of structures when happened form active load or fire, and so on.

  • PDF

High Temperature Properties of Cement Mortar Using EVA, EVCL Redispersible Polymer Powder and Fly Ash (EVA, EVCL 분말수지와 플라이애시를 혼입한 시멘트 모르타르의 고온특성)

  • Song, Hun;Shin, Hyeonuk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.365-372
    • /
    • 2018
  • 3D printing technology of construction field can be divided into structural materials, interior and exterior finishing materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a additive type manufacturing, and the role of a redispersible polymer powder is important. But, high temperatures, redispersible polymer cement base material beget dehydration and micro crack of cement matrix. In this research, we developed a EVA, EVCL redispersible polymer cement base material applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility. From the test result, developed EVCL redispersible polymer cement mortar showed good stability in high temperatures. These high temperature stability is caused by the ethylene-vinyl chloride binding. Thus, this result indicates that it is possible to fire resistant 3D printing interior and exterior finishing materials.

Study on the High Temperature Properties of Fireproof Mortar Using Various Types of Fine Aggregate (잔골재 종류에 따른 내화피복용 모르타르의 고온 성상에 관한 연구)

  • Lim, Seo-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • High strength concrete has a structural advantage as well as superior usability and durability, so that its application in building is being steadily augmented. However, in the high temperature like in a fire, the high strength concrete has extreme danger named explosive spalling. It is known that the major cause of explosive spalling is water vapour pressure inside concrete. General solution for preventing concrete from spalling include applying fire protection coats to concrete in order to control the rising temperature of members in case of fire. The purpose of this study is to investigate the high temperature properties of fireproof mortar using organic fiber and various types of fine aggregate for fire protection covering material. The results showed that addition of perlite and polypropylene fiber to mortar modifies its pore structure and reduces its density. This causes the internal temperature to rise. As a results, it is found that a new fireproof mortar can be used in the fire protection covering material in high strength concrete.

Loading capacity of simply supported composite slim beam with deep deck

  • Shi, Yongjiu;Yang, Lu;Wang, Yuanqing;Li, Qiuzhe
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.349-366
    • /
    • 2009
  • The composite slim beam has become popular throughout Europe in recent years and has also been used on some projects in China. With its steel section encased in a concrete slab, the steel-concrete composite slim beam can provide the floor construction with minimum depth and high fire resistance. However, the design method of the T-shape steel-concrete composite beam is no longer applicable to the composite slim beam with deep deck for its special construction, of which the present design models are not available but mainly depend on experiences. The elevation of the flexural stiffness and bending capacity of composite slim beams with deep deck is rather complicated, because the influences of many factors should be taken into account, such as the variable section dimensions, development of cracks and non-linear characteristics of concrete, etc. In this paper, experimental investigations have been conducted into the flexural behavior of two specimens of simply supported composite slim beam with deep deck. The emphases were laid on the bonding force on the interface between steel beam and concrete, the stress distribution of beam section, the flexural stiffness and bending capacity of the composite beams. Based on the experimental results, the reduction factor of equivalent stress distribution in concrete flange is suggested, and the calculation method of flexural stiffness and bending capacity of simply supported slim beams are proposed.

Fire Resistant Properties of the RC Columns Applying Various Splling Prevention Methods (폭렬방지공법 변화에 따른 RC 기둥부재의 내화특성)

  • Han, Cheon-Goo;Pei, Chang-Chun;Lee, Jong-Suk;Lee, Chan-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.119-126
    • /
    • 2009
  • This study investigated the fire resistance of RC columns applying Fiber addition method, Fire board attaching method, and Fire proof sparying method. The results were summarized as following. The test showed that increase of fiber content, as expected, decreased the fluidity of fresh concrete, but for the types of fiber, the specimens containing nylon(NY) was favorable. The incline of fiber content also affected on the air content of concrete, which the specimens adding polypropylene(PP) fiber was the lowest, followed by a less decrease in polyvinyl alchhol(PVA) and then NY respectively. For the compressive strength at 28days, it was over 50MPa and showed slight increasing tendency by rising fiber contents. After the fire test completed, control concrete exhibited the severe demage, while the specimens containing more than 0.05vol.% of PP and NY was able to protect from spalling. In the case of splay, the partly spalling occurred at the all finishing material, however the RC columns were protected from spalling. For the methods attached with boards, all RC columns were protected except the dry attaching method. The reduced weight ratio was favorable because it was below 8 % except for plain concrete.