• Title/Summary/Keyword: structural feasibility

Search Result 701, Processing Time 0.024 seconds

Application assessments of concrete piezoelectric smart module in civil engineering

  • Zhang, Nan;Su, Huaizhi
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.499-512
    • /
    • 2017
  • Traditional structural dynamic analysis and Structural Health Monitoring (SHM) of large scale concrete civil structures rely on manufactured embedding transducers to obtain structural dynamic properties. However, the embedding of manufactured transducers is very expensive and low efficiency for signal acquisition. In dynamic structural analysis and SHM areas, piezoelectric transducers are more and more popular due to the advantages like quick response, low cost and adaptability to different sizes. In this paper, the applicable feasibility assessment of the designed "artificial" piezoelectric transducers called Concrete Piezoelectric Smart Module (CPSM) in dynamic structural analysis is performed via three major experiments. Experimental Modal Analysis (EMA) based on Ibrahim Time Domain (ITD) Method is applied to experimentally extract modal parameters. Numerical modal analysis by finite element method (FEM) modeling is also performed for comparison. First ten order modal parameters are identified by EMA using CPSMs, PCBs and FEM modeling. Comparisons are made between CPSMs and PCBs, between FEM and CPSMs extracted modal parameters. Results show that Power Spectral Density by CPSMs and PCBs are similar, CPSMs acquired signal amplitudes can be used to predict concrete compressive strength. Modal parameter (natural frequencies) identified from CPSMs acquired signal and PCBs acquired signal are different in a very small range (~3%), and extracted natural frequencies from CPSMs acquired signal and FEM results are in an allowable small range (~5%) as well. Therefore, CPSMs are applicable for signal acquisition of dynamic responses and can be used in dynamic modal analysis, structural health monitoring and related areas.

Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis

  • Xue, Yiguo;Li, Xin;Qiu, Daohong;Ma, Xinmin;Kong, Fanmeng;Qu, Chuanqi;Zhao, Ying
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.283-293
    • /
    • 2019
  • Evaluating the stability of the excavation face of the cross-river shield tunnel with good accuracy is considered as a nonlinear and multivariable complex issue. Understanding the stability evaluation method of the shield tunnel excavation face is vital to operate and control the shield machine during shield tunneling. Considering the instability mechanism of the excavation face of the cross-river shield and the characteristics of this engineering, seven evaluation indexes of the stability of the excavation face were selected, i.e., the over-span ratio, buried depth of the tunnel, groundwater condition, soil permeability, internal friction angle, soil cohesion and advancing speed. The weight of each evaluation index was obtained by using the analytic hierarchy process and the entropy weight method. The evaluation model of the cross-river shield construction excavation face stability is established based on the idea point method. The feasibility of the evaluation model was verified by the engineering application in a cross-river shield tunnel project in China. Results obtained via the evaluation model are in good agreement with the actual construction situation. The proposed evaluation method is demonstrated as a promising and innovative method for the stability evaluation and safety construction of the cross-river shield tunnel engineerings.

A Study on the Alternative Evaluation of the High-rise Building Structural System (고층건물 구조시스템의 대안평가 방안 연구)

  • Kim, Yeong-Min;Kim, Chee-Kyeon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.425-434
    • /
    • 2010
  • This study presents the alternative evaluation technique for the high-rise building structural system. The alternative evaluation of the structural system is performed in three steps, that is, preliminary evaluation, main evaluation and detailed evaluation. The evaluation categories are composed of structural performance, economic feasibility and term of work. Each categories are composed of detailed items to evaluate of its own. In preliminary evaluation, qualitative evaluation based on experimental knowledge is performed. In main and detailed evaluations, quantitative evaluations based on numeric data are performed. The weighted-sum method is applied to integrate the evaluated results of each items and its importance. The applicability of the proposed method was verified by applying it to the practical buildings and simulate the procedures.

XML-Based Digitalization of Structural Design Sheets for RC Buildings (XML을 이용한 철근콘크리트 건물 구조계산서 전자화)

  • Jung Jong-Hyun;Kang Kyung-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.435-443
    • /
    • 2005
  • This study describes the XML-based digitalization of structural design sheets for RC buildings to exchange on the web. For this purpose, first, the data structure of XML document that represents the structural design skeets, including mathematical expressions and graphics that cannot be easily exchanged on the web, is defined. Then, the presentation of the XML documents on the web is discussed. The prototype that facilitates the web-based exchange of the XML documents we developed and the feasibility of the results of this study is discussed.

Structural Design of Coupled RC Structural Wall Considering Plastic Behavior (소성거동을 고려한 병렬 RC 구조벽체시스템의 설계)

  • Yu, Seung-Yoon;Eom, Tae-Sung;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.351-361
    • /
    • 2017
  • Reinforced concrete(RC) structural walls are major lateral load-resisting structural member in building structures. Generally these RC structural walls are coupled with each other by the coupling beams and slabs, and therefore they behave as RC coupled structural wall system. In the design of these coupled structural wall systems, member forces are calculated using elastic structural analysis. These elastic analysis methodologies for the design of coupled structural wall system was not reasonable because it can not consider their ultimate behavior and assure economic feasibility. Performance based design and moment redistribution method to solve these problems is regarded as a reasonable alternative design method for RC coupled structural wall system. However, it is not verified under various design parameters. In this study, nonlinear analysis of RC coupled structural wall system was performed according to various design parameters such as reinforcement ratio, ultimate concrete strain and wall height. Based on analysis results, design considerations for coupled RC structural wall system was proposed.

Mechanical Amplification of Relative Movements in Damped Outriggers for Wind and Seismic Response Mitigation

  • Mathias, Neville;Ranaudo, Francesco;Sarkisian, Mark
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.51-62
    • /
    • 2016
  • The concept of introducing viscous damping devices between outriggers and perimeter columns in tall buildings to provide supplementary damping and improve performance, reduce structural costs, and increase available usable area was developed and implemented by Smith and Willford (2007). It was recognized that the relative vertical movement that would occur between the ends of outriggers and columns, if they were not connected, could be used to generate damping. The movements, and correspondingly damping, can potentially be significantly increased by amplifying them using simple "mechanisms". The mechanisms also make it possible to increase the number of available dampers and thus further increase supplementary damping. The feasibility of mechanisms to amplify supplementary damping and enhance structural performance of tall, slender buildings is studied with particular focus on its efficacy in improving structural performance in wind loads.

Structural Damage Monitoring of Harbor Caissons with Interlocking Condition

  • Huynh, Thanh-Canh;Lee, So-Young;Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.678-685
    • /
    • 2012
  • The objective of this study is to monitor the health status of harbor caissons which have potential foundation damage. To obtain the objective, the following approaches are performed. Firstly, a structural damage monitoring(SDM) method is designed for interlocked multiple-caisson structures. The SDM method utilizes the change in modal strain energy to monitor the foundation damage in a target caisson unit. Secondly, a finite element model of a caisson system which consists of three caisson units is established to verify the feasibility of the proposed method. In the finite element simulation, the caisson units are constrained each other by shear-key connections. The health status of the caisson system against various levels of foundation damage is monitored by measuring relative modal displacements between the adjacent caissons.

Structural Health Monitoring of Aircraft Reciprocating Engine Based on Principal Component Analysis (PCA) (주성분 분석(PCA)에 의한 항공기 왕복 엔진의 구조 건전도 모니터링)

  • Kim, Ji-Hwan;Park, Seong-Eun;Lee, Hyeong-Cheol
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • This paper presents a structural health monitoring method of aircraft reciprocating engine using Principal Component Analysis (PCA) which analyzes vibration expressed by Averaged Normalized Power Spectral Density (ANPSD). Because ANPSD of the rotating shaft is sensitive to the rotating speed, this paper proposes to use a post-processing method of ANPSD is used to reduce the sensitivity. The PCA extracts compressed information from the post-processed ANPSDs and the information means the difference between current and normal cases of the engine. The experimental results demonstrate the feasibility and effectiveness of the proposed method to detect abnormal cases of the engine.

Feasibility Study on Road Bridge Passed by Heavy Equipment Transporter (HETS 차량의 교량 통과 가능성에 관한 연구)

  • Kang, Young-Chul;Lee, Pil-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.236-247
    • /
    • 2009
  • In Korea, the driving system restriction criteria is strictly applied(gross weight 400kN, axial load 100kN). Especially after the Seoungsu Bridge accident, safety factor has been strictly applied. The Safety factor is applied to the cumulative results for each steps like design, construction, maintenance of the Bridge. Because of it, the bridge is undervalued compared to its capacity. So, this generates loss for both private and military sector(eg. logistical delays, structural damage, etc.). But analyzing data from many existing researches we have confirmed that the military heavy vehicle may pass through the first class bridges. In consequence, this study have focused on determining whether HETS vehicles can pass over the first class bridge, without safety issues, using MIDAS structural analysis program. The results have confirmed that the military heavy vehicle may pass over the bridge.

Fire Resistance Evaluation of SLIM AU Composite Beam (슬림 AU 합성보 내화성능 평가)

  • Oh, Myoung-Ho;Kim, Myeong-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.53-58
    • /
    • 2016
  • SLIM AU(A plus U-shaped) composite beam was developed for reducing the story height in the residential buildings, and saving the cosrtuction cost of floor structures. Structural performance and economic feasibility of the composite beam have been sufficiently approved through the structural experiments and the analytical studies. However, the verification for fire safety is necessary for the practical application of the composite beam. The fire resistance tests with and without loading were performed for the fire safety verification, and the test results were summarized in this paper.