• 제목/요약/키워드: structural failures

검색결과 247건 처리시간 0.021초

해양 가이드-타워의 고정말뚝에 대한 신뢰도 해석 (Reliability Analysis of Offshore Guyed Tower Against Anchor Pile Failures)

  • 류정선;윤정방;강성후
    • 전산구조공학
    • /
    • 제4권3호
    • /
    • pp.117-127
    • /
    • 1991
  • 해양가이드-타워에 관하여 폭풍 발생시, 계류장치 고정말뚝의 파괴를 주안점으로 한 신뢰도해석 방법에 대하여 연구하였다. 말뚝의 파괴는 최대하중에 대한 것과 반복하중에 대한 것의 두가지 조건을 고려하였다. 최대하중으로 인한 파괴확률은 최초발생확률의 산정방법을 사용하였다. 반면, 반복하중으로 인한 파괴확률은 점토층에 타설된 말뚝에 대한 피로곡선을 바탕으로하여 구하였다. 불규칙파랑에 대한 구조물의 동적해석은 비선형문제의 선형화를 통한 주파수영역 해석으로부터 효율적으로 수행되었다. 수치해석결과, 말뚝지지력의 평균 안전도가 낮고 이의 분산계수가 클수록, 반복하중으로 인한 파괴확률이 최대하중으로 인한 파괴확률과 같은 수준으로 커짐을 알 수 있었다.

  • PDF

원자력발전소의 Main Control Boards에 대한 내진 해석 (Seismic Analysis of the Main Control Boards for Nuclear Power Plant)

  • Byeon, Hoon-Seok;Lee, Joon-Keun;Kim, Jin-Young
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.498-498
    • /
    • 2001
  • Seismic qualification of the Main Control Boards for nuclear power plants has been performed with the guideline of AS ME Section III. US NRC Reg. Guide and IEEE 344 code. The analysis model of the Main Control Boards is consist of beam. shell and mass element by using the finite element method. and, at the same time. the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz. which is the upper frequency limit of the seismic load, the response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and functional integrity of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As all the combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, it concludes the Main Control Boards is dynamically qualified for seismic conditions. Although the authors had confirmed the structural and functional integrity of both Main Control Boards and all the component, in this paper only the seismic analysis of the Main Control Board is introduced.

  • PDF

Prediction of Change in Equivalent Circuit Parameters of Transformer Winding Due to Axial Deformation using Sweep Frequency Response Analysis

  • Sathya, M. Arul;Usa, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.983-989
    • /
    • 2015
  • Power transformer is one of the major and key apparatus in electric power system. Monitoring and diagnosis of transformer fault is necessary for improving the life period of transformer. The failures caused by short circuits are one of the causes of transformer outages. The short circuit currents induce excessive forces in the transformer windings which result in winding deformation affecting the mechanical and electrical characteristics of the winding. In the present work, a transformer producing only the radial flux under short circuit is considered. The corresponding axial displacement profile of the windings is computed using Finite Element Method based transient structural analysis and thus obtained displacements are compared with the experimental result. The change in inter disc capacitance and mutual inductance of the deformed windings due to different short circuit currents are computed using Finite Element Method based field analyses and the corresponding Sweep Frequency Responses are computed using the modified electrical equivalent circuit. From the change in the first resonant frequency, the winding movement can be quantified which will be useful for estimating the mechanical withstand capability of the winding for different short circuit currents in the design stage itself.

Adaptive and Robust Aeroelastic Control of Nonlinear Lifting Surfaces with Single/Multiple Control Surfaces: A Review

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.285-302
    • /
    • 2010
  • Active aeroelastic control is an emerging technology aimed at providing solutions to structural systems that under the action of aerodynamic loads are prone to instability and catastrophic failures, and to oscillations that can yield structural failure by fatigue. The purpose of the aeroelastic control among others is to alleviate and even suppress the vibrations appearing in the flight vehicle subcritical flight regimes, to expand its flight envelope by increasing the flutter speed, and to enhance the post-flutter behavior usually characterized by the presence of limit cycle oscillations. Recently adaptive and robust control strategies have demonstrated their superiority to classical feedback strategies. This review paper discusses the latest development on the topic by the authors. First, the available control techniques with focus on adaptive control schemes are reviewed, then the attention is focused on the advanced single-input and multi-input multi-output adaptive feedback control strategies developed for lifting surfaces operating at subsonic and supersonic flight speeds. A number of concepts involving various adaptive control methodologies, as well as results obtained with such controls are presented. Emphasis is placed on theoretical and numerical results obtained with the various control strategies.

마그네슘 합금 AZ31 판재의 온간 사각컵 디프드로잉 공정의 유한요소 해석 (Finite-Element Analysis of Warm Square Cup Deep Drawing Process of Magnesium Alloy AZ31 Sheet)

  • 김흥규;이위로;홍석관;김종덕;한병기
    • 소성∙가공
    • /
    • 제15권3호
    • /
    • pp.232-240
    • /
    • 2006
  • Magnesium alloys are expected to be widely used fur the parts of structural and electronic appliances due to their lightweight and EMI shielding characteristics. While the die casting has been mainly used to manufacture the parts from the magnesium alloys, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. However, the magnesium alloy has low formability at room temperature and therefore, in many cases, forming at elevated temperatures is necessary to obtain the required material flow without failure. In the present study, square cup deep drawing tests using the magnesium alloy AZ31 sheet were experimentally conducted at various elevated temperatures as well as room temperature, and the corresponding finite-element simulations, which calculated the damage evolution based on the Oyane's criterion, were conducted using the stress-strain relations from the tensile tests at various temperatures. The formability predictability by the finite-element analysis was investigated by comparing the predicted damage distributions over the deformed AZ31 sheet at elevated temperatures with the corresponding experimental deformations with failures.

마그네슘 합금 AZ31 판재의 온간 사각컵 딥드로잉 성형성의 유한요소 해석 (Finite-Element Analysis of Formability in Warm Square Cup Deep Drawing of Magnesium Alloy AZ31 Sheet)

  • 김흥규;이위로;홍석관;한병기;김종덕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.122-125
    • /
    • 2005
  • Magnesium alloys are expected to be widely used for the parts of structural and electronic applications due to their lightweight and EMI shielding characteristics. While the die casting has been mainly used to manufacture the parts from the magnesium alloys, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. However, the magnesium alloy has low formability at room temperature and therefore, in many cases, forming at elevated temperatures is necessary to obtain the required material flow without failure. In the present study, square cup deep drawing tests using the magnesium alloy AZ31 sheet were experimentally conducted at various elevated temperatures as well as room temperature, and the corresponding finite-element simulations, which calculated the damage evolution based on the Oyane's criterion, were conducted using the stress-strain relations from the tensile tests at various temperatures. The formability predictability by the finite-element analysis was investigated by comparing the predicted damage distributions over the deformed AZ31 sheet at elevated temperatures with the corresponding experimental deformations with failures.

  • PDF

건설공사의 확률적 위험도분석평가 (Probabilistic Risk Assessment for Construction Projects)

  • 조효남;임종권;김광섭
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.24-31
    • /
    • 1997
  • Recently, in Korea, demand for establishment of systematic risk assessment techniques for construction projects has increased, especially after the large construction failures occurred during construction such as New Haengju Bridge construction projects, subway construction projects, gas explosion accidents etc. Most of existing risk analysis modeling techniques such as Event Tree Analysis and Fault Tree Analysis may not be available for realistic risk assessment of construction projects because it is very complex and difficult to estimate occurrence frequency and failure probability precisely due to a lack of data related to the various risks inherent in construction projects like natural disasters, financial and economic risks, political risks, environmental risks as well as design and construction-related risks. Therefor the main objective of this paper is to suggest systematic probabilistic risk assessment model and demonstrate an approach for probabilistic risk assessment using advanced Event Tree Analysis introducing Fuzzy set theory concepts. It may be stated that the Fuzzy Event Tree AnaIysis may be very usefu1 for the systematic and rational risk assessment for real constructions problems because the approach is able to effectively deal with all the related construction risks in terms of the linguistic variables that incorporate systematically expert's experiences and subjective judgement.

  • PDF

Damage Index of Steel Members under Severe Cyclic Loading

  • Park, Yeon-soo;Han, Suk-yeol;Suh, Byoung-chal;Jeon, Dong-ho;Park, Sun-joon
    • Computational Structural Engineering : An International Journal
    • /
    • 제3권1호
    • /
    • pp.9-17
    • /
    • 2003
  • This paper aims at investigating the damage process of steel members leading to the failure under strong repeated loading, proposing the damage index using various factors related to the damage, and developing the analysis method for evaluating the damage state. Cantilever-type steel members were analyzed under uniaxial load and combined with a constant axial load, considering a horizontal displacement history. In analyzing the models, loading patterns and steel types (SS400, SM570, Posten80) were considered as main parameters. From the analysis results, the effects of parameter on the failures mode, the deformation capacity, the damage process are also discussed. Each failure process was compared as steel types. Consequently, the failure of steel members under strong repeated loading was determined by loading. Especially it was seen that the state of the failure is closely related to the local strain.

  • PDF

Dynamic response of concrete gravity dams using different water modelling approaches: westergaard, lagrange and euler

  • Altunisik, A.C.;Sesli, H.
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.429-448
    • /
    • 2015
  • The dams are huge structures storing a large amount of water and failures of them cause especially irreparable loss of lives during the earthquakes. They are named as a group of structures subjected to fluid-structure interaction. So, the response of the fluid and its hydrodynamic pressures on the dam should be reflected more accurately in the structural analyses to determine the real behavior as soon as possible. Different mathematical and analytical modelling approaches can be used to calculate the water hydrodynamic pressure effect on the dam body. In this paper, it is aimed to determine the dynamic response of concrete gravity dams using different water modelling approaches such as Westergaard, Lagrange and Euler. For this purpose, Sariyar concrete gravity dam located on the Sakarya River, which is 120km to the northeast of Ankara, is selected as a case study. Firstly, the main principals and basic formulation of all approaches are given. After, the finite element models of the dam are constituted considering dam-reservoir-foundation interaction using ANSYS software. To determine the structural response of the dam, the linear transient analyses are performed using 1992 Erzincan earthquake ground motion record. In the analyses, element matrices are computed using the Gauss numerical integration technique. The Newmark method is used in the solution of the equation of motions. Rayleigh damping is considered. At the end of the analyses, dynamic characteristics, maximum displacements, maximum-minimum principal stresses and maximum-minimum principal strains are attained and compared with each other for Westergaard, Lagrange and Euler approaches.

Determination of the repair grout volume to fill voids in external post-tensioned tendons

  • Im, Seok Been;Hurlebaus, Stefan
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.25-38
    • /
    • 2012
  • Recently, investigated failures of external post-tensioned (PT) tendons have called attention to the corrosion of strands in PT bridges, and the prevention of ongoing corrosion is required to secure their structural integrity. Since voids inside ducts can be a source for the ingress of water or deleterious chemicals, the vacuum grouting (VG) method and a volumeter for estimating amount of repair grouts were employed to fill voided ducts. However, the VG method is expensive and time-consuming for infield application because it requires an air-tight condition of entire ducts. Thus, latest research assessed three different repair grouting methods, and the pressure vacuum grouting (PVG) method was recommended in the field because it showed good filling capability in voided ducts and did not require an air-tight condition. Thus, a new method is required to estimate the volume of repair grouts because the PVG method is not applied in air-tight ducts. This research assesses the relationship between voided areas on ducts identified with soundings and required grout volume for repair using experimental results. The results show that the proposed equations and assumptions for estimating repair grout volume provide a sufficient amount of repair grouts for filling voided ducts.