• 제목/요약/키워드: structural design process

검색결과 1,922건 처리시간 0.027초

목구조 설계를 위한 확정론적 구조 설계법과 확률 기반 구조 설계법의 비교 연구 (Methods for wooden structural design- A comparative research between deterministic design and probability based design)

  • 박문재;김광철
    • 한국가구학회지
    • /
    • 제20권4호
    • /
    • pp.358-373
    • /
    • 2009
  • Probability based design(PBD)method has some advantages against current design methods. First, it can provide the quantitative values for the structural safety or capacity through the reliability index, $^{\beta}$. That presented the certainty on the corresponding structure for the designer or user, also that permitted the broad consideration in the safety of structures. In addition, it can give the quantitative lifetime of the related structure in the calculation process of target reliability index. Also, incidental economical efficiency can be expected because decrease of required structural material can be obtained by using the practical material data. Unlikely current deterministic structural design methods, main advantage is the reflection of real condition in the structural design process by application of the data with not small clear specimen but structural size material. Advanced countries, namely America, Canada, Europe, Australia and New Zealand already converted from allowable stress design(ASD) method to PBD method and used as a standard wooden structures code in the late 1980s and 1990s. Other domestic constructions standards such as the steel or concrete constructions accepted and used the PBD methods already. Accordingly, wooden structural design method also should be converted from deterministic ASD to probabilistic LRFD(Load and resistance factor design) in order to keep pace with worldwide demands for PBD. Hence, to suggest the reason of introduction the PBD in domestic wooden structural design and analysis, a brief example was used to show the different reliability index by using the different design methods. Definition, merits and demerits of deterministic ASD and probabilistic LRFD were followed. Also the three examples were presented to show the similarity and differences between ASD and LRFD. Finally, connection problems that might cause a disputation in wooden structural design and analysis were broadly examined.

  • PDF

XML 스키마 매칭 기법을 이용한 구조설계 문서구조 표준화 방법론 (A methodology for the standardization of structural design document structure using XML schema matching technique)

  • 김봉근;정연석;김동현;이상호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.200-207
    • /
    • 2006
  • A new formal standardization methodology of the structural design document information is proposed in this paper. The standardization process is divided into three steps: pre-process of the collected sample document (CSD), construction of the document structure, and definition of the occurrence of each element in the document. During the pre-process, the detail document contents in the CSD are indexed with templates defined in this study, and the indexed CSD is translated into XML Schema (XSD) formal Afterwards the degree of confidences of all elements between the temporary standard document (TSD) and the translated CSD are calculated by using the XML schema matching algorithm; the TSD is then updated. This second step is repeated until all of the CSD are compared. In the final step, the common elements and unbounded elements are extracted by determining the occurrence of the temporary document elements, and the standardized document schema is exported in the XSD format. The case study dealing with the structural calculation documents show that the ,proposed methodology can be effectively used to build a XML -based information model of structural design documents.

  • PDF

구조-제어시스템의 동시최적설계를 위한 유전자알고리즘 및 Goal Programming 기법 (Genetic Algorithm and Goal Programming Technique for Simultaneous Optimal Design of Structural Control System)

  • 옥승용;박관순;고현무
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.497-504
    • /
    • 2003
  • An optimal design method for hybrid structural control system of building structures subject to earthquake excitation is presented in this paper. Designing a hybrid structural control system nay be defined as a process that optimizes the capacities and configuration of passive and active control systems as well as structural members. The optimal design proceeds by formulating the optimization problem via a multi-stage goal programming technique and, then, by finding reasonable solution to the optimization problem by means of a goal-updating genetic algorithm. The process of the integrated optimization design is illustrated by a numerical simulation of a nine-story building structure subject to earthquake excitation. The effectiveness of the proposed method is demonstrated by comparing the optimally designed results with those of a hybrid structural control system where structural members, passive and active control systems are uniformly distributed.

  • PDF

BIM 기반의 구조설계와 상세설계의 인터페이스 모듈 개발 (A Development of Interface Module between Structural Design and Detail Design based on BIM)

  • 엄진업;신태송
    • 한국강구조학회 논문집
    • /
    • 제23권1호
    • /
    • pp.113-124
    • /
    • 2011
  • 본 연구는 BIM 기반의 건축구조설계 업무 프로세스에서 활용 가능한 철골 구조물의 구조해석모델과 기본상세모델의 상호운용성에 관한 것으로, 구조설계 업무를 지원하는 구조해석 소프트웨어와 상세모델링 및 도면작성 업무를 지원하는 BIM 소프트웨어 사이의 정보 교환을 수행할 수 있는 인터페이스 모듈의 개발에 관한 것이다. 인터페이스 모듈은 BIM의 상호운용성을 위한 정보 교환 방식 중 직접 연결 방식을 적용하였으며, 상용 BIM 어플리케이션 벤더에서 제공하는 OpenAPI를 이용하여 닷넷 프레임워크 개발환경을 통해 개발하였다. 개발된 인터페이스 모듈의 검증을 위해 예제 모델을 선정하여 구조해석모델로부터 상세모델링을 수행하기 위한 기본상세모델의 생성을 수행하였으며, 수행 과정을 기존 프로세스와 인터페이스 모듈을 적용한 연구 프로세스로 구분하여 비교, 분석함으로써 인터페이스 모듈의 효율성을 검증하였다.

통합 구조설계 시스템을 위한 설계 객체 모델의 개발과 구현 (Development and Implementation of Design Object Model for Integrated Structural Design System)

  • 천진호;이창호;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.151-158
    • /
    • 2001
  • This paper describes an example of developing an integrated design system, Integrated Structural Design System for Reinforced Concrete Buildings(INDECON). INDECON incorporates a central database and three design modules: a preliminary design module(PDM), a structural analysis module(SAM), and a detailed design module(DDM). The development of INDECON begins with the development of design models including Design Object Model(DOM) which describes design data during the structural design process. The Design Object Model is transformed to Design Table Model(DTM) for the central database, and is specified to be in detail for the three design modules. Then the central database is implemented and managed by relational database management system(RDBMS), and the three design modules are implemented using C++ programming language. The central database in the server computer communicates with the design modules in the client computers using TCP/IP internet protocol. The developing procedure for INDECON in this paper can be applied for developing more comprehensive integrated structural design systems.

  • PDF

철골 구조물의 통합 설계 시스템 (Integrating drafting with analysis and design of framed steel structures)

  • 김홍국;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.127-132
    • /
    • 1991
  • The purpose of this study is to integrate a structural design Process of framed steel structures. It is composed of analysis, design, drafting and construction management. However each step of these works involved with a large amount of data and man hour resources. The aim of this study is to alleviate time consuming efforts mentioned above by integrating the different stage of works. Very successful results have been achieved by setting up a common database in whole process and applying the techniques of knowledge base system.

  • PDF

구조계획에서의 지식기반시스템 도입연구 (An application of a Knowledge-Based System for Structural Planning)

  • 김상철;김홍국;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.137-144
    • /
    • 1994
  • This study describes an application of a knowledge-based system for a part of the development of an integrated structural design system. In preliminary structural design procedure, most structural design operation are performed by structural engineer's manual method. These lack of systematic operation hampers the effective system integration. By introducing expert system to the structural planning stage, structural engineer can automate structural Planning process of an integrated structural design system for complex design. Engineering data management is receiving increasing attention due to complexity of information necessary for performing structural engineering operations. So, in this paper, we describe a methodology for automating conceptual structural design and developing a knowledge-based system integrated with database. At the end, we use an implemented example to support our methodology.

  • PDF

양축 면내 압축하중 하의 이중판보강 선박판부재의 설계시스템 구축 (Development of Ship Plate Member Design System Reinforced by Doubler Plate Subjected to Biaxial In-plane Compressive Load)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제30권4호
    • /
    • pp.294-302
    • /
    • 2016
  • Because of the importance of steel material saving and rational ship structural design due to the rapid increase in steel prices, a ship structural design system was developed for plate members reinforced by doubler plates subjected to biaxial in-plane compressive loads. This paper mainly emphasizes the design system improvement and upgrade according to the change in the in-plane loading condition of the doubler plate from the single load discussed in a previous paper to the biaxial in-plane compressive load discussed in this paper. A direct design process by a structural designer was added to this developed optimized system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. As the second stage of preliminary steps of doubler design system development, design formulas subjected to these biaxial loads used in the doubler plate design system were suggested. Based on the introduction of influence coefficients $K_t_c$, $K_t_d$, $K_b_d$ and $K_a_d$ based on the variations in the doubler length, breadth, doubler thickness, and average corrosion thickness of the main plate reinforced by the doubler plate, respectively, the design formulas for the equivalent plate thickness of the main plate reinforced by the doubler plate were also developed, and a hybrid design system using these formulas was suggested for the doubler plate of a ship structure subjected to a biaxial in-plane compressive load. Using this developed design system for a main plate reinforced by a doubler plate was expected to result in a more rational reinforced doubler plate design considering the efficient reinforcement of ship plate members subjected to these biaxial loads. Additionally, a more detail structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a plate member reinforced by a doubler plate.

대형 선박 프로펠러 가공 공정용 터닝 시스템에 관한 연구 (A Study on the Turning System for Processing a Large Ship Propeller)

  • 진도훈
    • 한국산업융합학회 논문집
    • /
    • 제26권5호
    • /
    • pp.825-831
    • /
    • 2023
  • The propellers used for big ships have a large diameter and are very heavy. In order to apply a precise and safe work process to them, it is necessary to use an exclusive turning system. For this reason, various techniques are applied to produce them. However, workers' convenience and safety are not taken into consideration enough at production sites. Conventionally, these propellers are designed to be separated as their turning system is loaded and rotated by empty weight. Therefore, it is necessary to replace such a design. This study tries to find the weaknesses of the design and structure of a conventional propeller turning system for large ships, to verify structure integrity of a structure in structural analysis, and to devise a plan for designing a new type of turning system. In the basic concept design and structural analysis for the turning system used in the propeller finishing process for large ships, this study drew the following conclusions. It was possible to develop the work process of the turning system for the propeller finishing process used for large ships, to obtain the dimensions for exterior design through a basic design. Structural analysis was conducted to find the structure integrity of the turning system. As a result, in the rail installed to transfer a gantry, the maximum stress was about 45MPa, about 5.5 times lower than the yield strength 250MPa. Therefore, the turning system was judged to be safe structurally.

종방향 면내 압축하중 하의 세장한 선박 이중판 하이브리드 설계시스템 구축 (Development of Slender Doubler Plate Hybrid Design System for Ship Structure Subjected to Longitudinal In-plane Compression)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제28권1호
    • /
    • pp.20-27
    • /
    • 2014
  • In view of the importance of material reduction and rational structural design due to the rapid increase in oil and steel prices, an optimized structural hybrid design system for the doubler plate of a ship's hull structure was developed. A direct design process by a structural designer was added to this developed optimized system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. As the first step of the doubler design system development, the design formulas used in doubler design system were introduced. Based on the introduction of influence coefficients $K_{t_c}$ $K_{t_d}$, $K_{b_d}$ and $K_{a_d}$ according to the variations in the doubler length, breadth, doubler thickness, and average corrosion thickness of the main plate, the design formulas for an equivalent plate thickness were developed, and a hybrid design system using these formulas was suggested for the slender doubler plate of a ship structure subjected to a longitudinal in-plane compression load. By using this developed design system, a more rational doubler plate design can be expected considering the efficient reinforcement of the plate members of ship structures. Additionally, a more detailed structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for the doubler plate.