• 제목/요약/키워드: structural design parameters

검색결과 1,446건 처리시간 0.024초

유전자 알고리즘을 이용한 반능동형가장치의 구조-제어계의 동시최적화

  • 서민선;이시복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.501-504
    • /
    • 1995
  • A Simultaneous optimal design of structural and control system of a semi-active suspension is applied on a helf-car model in this paper. Suspension stiffnesses and dampings are selected as structural design parameters and damping forces of variable dampers as controller parameters. Sence this optimization problem is of large discontinuous space, conventional exhaustive methods are not enough. So we here try out an approach using Genetic Algorithm for our problem. Through numerical simulation work, the performance of the simultaneously optimized system was tested and showed meaningful improvement over the partially optimized ones.

  • PDF

이동하중이 작용하는 3경간 연속보의 근사 최적제원 (Near-Optimal Parameters of Three Span Continuous Beams subjected to a Moving Load)

  • 이병규;오상진;모정만
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.139-146
    • /
    • 1997
  • The main purpose of this paper is to investigate the near-optimal parameters of continuous beam subject to a moving load. The computer-aided optimization technique is used to obtain the near-optimal parameters. The computer program is developed to obtain the natural frequency parameters and the forced vibration responses to a transit point load for the continuous beam with variable support spacing, mass and stiffness. The optimization function to describe the design efficiency is defined as a linear combination of four dimensionless span characteristics: the maximum dynamic stress; the stress difference between span segments; the rms deflection under the transit point load; and the total span mass. Studies of three span beams show that the beam with near-optimal parameters can improve design efficiency by 12 to 24 percent when compared to a reference configuration beams of the same total span length.

  • PDF

System RBDO of truss structures considering interval distribution parameters

  • Zaeimi, Mohammad;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.81-96
    • /
    • 2019
  • In this paper, a hybrid uncertain model is applied to system reliability based design optimization (RBDO) of trusses. All random variables are described by random distributions but some key distribution parameters of them which lack information are defined by variation intervals. For system RBDO of trusses, the first order reliability method, as well as monotonicity analysis and the branch and bound method, are utilized to determine the system failure probability; and Improved (${\mu}+{\lambda}$) constrained differential evolution (ICDE) is employed for the optimization process. System reliability assessment of several numerical examples and system RBDO of different truss structures are proposed to verify our results. Moreover, the effect of different classes of interval distribution parameters on the optimum weight of the structure and the reliability index are also investigated. The results indicate that the weight of the structure is increased by increasing the uncertainty level. Moreover, it is shown that for a certain random variable, the optimum weight is more increased by the translation interval parameters than the rotation ones.

Equivalent linear and bounding analyses of bilinear hysteretic isolation systems

  • Wang, Shiang-Jung;Lee, Hsueh-Wen;Yu, Chung-Han;Yang, Cho-Yen;Lin, Wang-Chuen
    • Earthquakes and Structures
    • /
    • 제19권5호
    • /
    • pp.395-409
    • /
    • 2020
  • With verifications through many relevant researches in the past few decades, adopting the equivalent lateral force procedure for designing seismically isolated structures as a preliminary or even final design approach has become considerably mature and publicly acceptable, especially for seismic isolation systems that mechanically exhibit bilinear hysteretic behavior. During the design procedure, in addition to a given seismic demand, structural designers still need to previously determine three parameters, such as mechanical properties of seismic isolation systems or design parameters and performance indices of seismically isolated structures. However, an arbitrary or improper selection of given parameters might cause diverse or even unacceptable design results, thus troubling structural designers very much. In this study, first, based on the criterion that at least either two design parameters or two performance indices of seismically isolated structures are decided previously, the rationality and applicability of design results obtained from different conditions are examined. Moreover, to consider variations of design parameters of seismically isolated structures attributed to uncertainties of mechanical properties of seismic isolation systems, one of the conditions is adopted to perform bounding analysis for seismic isolation design. The analysis results indicate that with a reasonable equivalent damping ratio designed, considering a specific variation for two design parameters (the effective stiffness and equivalent damping ratio) could present more conservative bounding design results (in terms of isolation displacement and acceleration transmissibility) than considering the same variation but for two mechanical properties (the characteristic strength and post-yield stiffness).

Design Method of Steel Slit Shear Walls with Tapered Links for Structural Condition Assessment

  • He, Liusheng;Wu, Chen;Jiang, Huanjun
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.361-368
    • /
    • 2020
  • The authors developed a new type of steel slit shear wall (SSSW) having the function of structural condition assessment through visually inspecting the out-of-plane deformation of the designed tapered links subjected to lateral deformation. To facilitate its practical application, this paper studies how to design dimensions of the tapered links. Two parameters, the width-to-thickness ratio of the tapered links and steel yield stress, were studied. The performance of structural condition assessment was affected by both parameters with the width-to-thickness ratio being the controlling one. Through both numerical and experimental study, the designed width-to-thickness ratio of tapered links for different levels of structural condition assessment was established considering the effect of different steel grades used. In practice, the dimensions of tapered links can be determined following the design equation provided. Finally, a design procedure for the proposed SSSW system is provided.

Optimal Structural Design for Flexible Space Structure with Control System Based on LMI

  • Park, Jung-Hyen;Cho, Kyeum-Rae
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.75-82
    • /
    • 2002
  • A simultaneous optimal design problem of structural and control systems is discussed by taking a 3-D truss structure as an object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The structural objective function is the structural weight and the control objective function is $H_{\infty}$ norm from the disturbance input to the controlled output in the closed-loop system. The design variables are cross sectional areas of the truss members. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI) By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of simultaneous optimal design of structural and control systems.

상시진동 계측자료를 이용한 Nanjing TV탑의 강성계수 추정 (Identification of Stiffness Parameters of Nanjing TV Tower Using Ambient Vibration Records)

  • Kim Jae Min;Feng. M. Q.
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.291-300
    • /
    • 1998
  • This paper demonstrates how ambient vibration measurements at a limited number of locations can be effectively utilized to estimate parameters of a finite element model of a large-scale structural system involving a large number of elements. System identification using ambient vibration measurements presents a challenge requiring the use of special identification techniques, which ran deal with very small magnitudes of ambient vibration contaminated by noise without the knowledge of input farces. In the present study, the modal parameters such as natural frequencies, damping ratios, and mode shapes of the structural system were estimated by means of appropriate system identification techniques including the random decrement method. Moreover, estimation of parameters such as the stiffness matrix of the finite element model from the system response measured by a limited number of sensors is another challenge. In this study, the system stiffness matrix was estimated by using the quadratic optimization involving the computed and measured modal strain energy of the system, with the aid of a sensitivity relationship between each element stiffness and the modal parameters established by the second order inverse modal perturbation theory. The finite element models thus identified represent the actual structural system very well, as their calculated dynamic characteristics satisfactorily matched the observed ones from the ambient vibration test performed on a large-scale structural system subjected primarily to ambient wind excitations. The dynamic models identified by this study will be used for design of an active mass damper system to be installed on this structure fer suppressing its wind vibration.

  • PDF

Numerical stability and parameters study of an improved bi-directional evolutionary structural optimization method

  • Huang, X.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • 제27권1호
    • /
    • pp.49-61
    • /
    • 2007
  • This paper presents a modified and improved bi-directional evolutionary structural optimization (BESO) method for topology optimization. A sensitivity filter which has been used in other optimization methods is introduced into BESO so that the design solutions become mesh-independent. To improve the convergence of the optimization process, the sensitivity number considers its historical information. Numerical examples show the effectiveness of the modified BESO method in obtaining convergent and mesh-independent solutions. A study of the effects of various BESO parameters on the solution is then conducted to determine the appropriate values for these parameters.

A hybrid deep learning model for predicting the residual displacement spectra under near-fault ground motions

  • Mingkang Wei;Chenghao Song;Xiaobin Hu
    • Earthquakes and Structures
    • /
    • 제25권1호
    • /
    • pp.15-26
    • /
    • 2023
  • It is of great importance to assess the residual displacement demand in the performance-based seismic design. In this paper, a hybrid deep learning model for predicting the residual displacement spectra under near-fault (NF) ground motions is proposed by combining the long short-term memory network (LSTM) and back-propagation (BP) network. The model is featured by its capacity of predicting the residual displacement spectrum under a given NF ground motion while considering the effects of structural parameters. To construct this model, 315 natural and artificial NF ground motions were employed to compute the residual displacement spectra through elastoplastic time history analysis considering different structural parameters. Based on the resulted dataset with a total of 9,450 samples, the proposed model was finally trained and tested. The results show that the proposed model has a satisfactory accuracy as well as a high efficiency in predicting residual displacement spectra under given NF ground motions while considering the impacts of structural parameters.

복합재료 원통쉘의 진동, 좌굴강도, 충격강도 특성 및 그의 설계최적화에 관한 연구 (A Study on the Design Optimization of Composite cylindrical shells with Vibration, Buckling Strength and Impact Strength Characteristics)

  • 이영신;전병희;오재문
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.48-69
    • /
    • 1997
  • The use of advanced composite materials in many engineering structures has steadily increased during the last decade. Advanced composite materials allow the design engineer to tailor the directional stiffness and the strength of materials as required for the structures. Design variables to the design engineer include multiple material systems. ply orientation, ply thickness, stacking sequence and boundary conditions, in addition to overall structural design parameters. Since the vibration and impact strength of composite cylindrical shell is an important consideration for composite structures design, the reliable prediction method and design methodology should be required. In this study, the optimum design of composite cylindrical shell for maximum natural frequency, buckling strength and impact strength are developed by analytic and numerical method. The effect of parameters such as the various composite material orthotropic properties (CFRP, GFRP, KFRP, Al-CFRP hybrid), the stacking sequences, the shell thickness, and the boundary conditions on structural characteristics are studied extensively.

  • PDF