• 제목/요약/키워드: structural crack detection

검색결과 125건 처리시간 0.021초

Smartphone-based structural crack detection using pruned fully convolutional networks and edge computing

  • Ye, X.W.;Li, Z.X.;Jin, T.
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.141-151
    • /
    • 2022
  • In recent years, the industry and research communities have focused on developing autonomous crack inspection approaches, which mainly include image acquisition and crack detection. In these approaches, mobile devices such as cameras, drones or smartphones are utilized as sensing platforms to acquire structural images, and the deep learning (DL)-based methods are being developed as important crack detection approaches. However, the process of image acquisition and collection is time-consuming, which delays the inspection. Also, the present mobile devices such as smartphones can be not only a sensing platform but also a computing platform that can be embedded with deep neural networks (DNNs) to conduct on-site crack detection. Due to the limited computing resources of mobile devices, the size of the DNNs should be reduced to improve the computational efficiency. In this study, an architecture called pruned crack recognition network (PCR-Net) was developed for the detection of structural cracks. A dataset containing 11000 images was established based on the raw images from bridge inspections. A pruning method was introduced to reduce the size of the base architecture for the optimization of the model size. Comparative studies were conducted with image processing techniques (IPTs) and other DNNs for the evaluation of the performance of the proposed PCR-Net. Furthermore, a modularly designed framework that integrated the PCR-Net was developed to realize a DL-based crack detection application for smartphones. Finally, on-site crack detection experiments were carried out to validate the performance of the developed system of smartphone-based detection of structural cracks.

진동실험에 의한 균열발견모델의 실험적 검증 (Experimental Verification of Crack Detection Model using Vibration Measurement)

  • Kim Jeong Tae;Ryu Yeon Sun;Song Chul Min;Cho Hyun Man
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.309-316
    • /
    • 1998
  • In this paper, a newly derived formulation of a crack detection model is presented and its feasibility to detect cracks in structures is verified experimentally. To meet this objective, the followig approach is utilized. Firstly, the crack detection scheme which consists of the damage localization model and the crack detection model is formulated. Secondly, the feasibility and practicality of the complete procedure of the crack detection model is evaluated by locating and sizing cracks in clamped-clamped beams for which a f3w modal parameters were measured for sixteen uncracked and cracked states. Major results observed from the crack detection exercises include that far most damage cases, the predicted crack locations falls within very close to the inflicted locations of cracks in the test beam and the size of crack values estimated at the predicted locations are very close to the inflicted magnitudes.

  • PDF

Transfer learning for crack detection in concrete structures: Evaluation of four models

  • Ali Bagheri;Mohammadreza Mosalmanyazdi;Hasanali Mosalmanyazdi
    • Structural Engineering and Mechanics
    • /
    • 제91권2호
    • /
    • pp.163-175
    • /
    • 2024
  • The objective of this research is to improve public safety in civil engineering by recognizing fractures in concrete structures quickly and correctly. The study offers a new crack detection method based on advanced image processing and machine learning techniques, specifically transfer learning with convolutional neural networks (CNNs). Four pre-trained models (VGG16, AlexNet, ResNet18, and DenseNet161) were fine-tuned to detect fractures in concrete surfaces. These models constantly produced accuracy rates greater than 80%, showing their ability to automate fracture identification and potentially reduce structural failure costs. Furthermore, the study expands its scope beyond crack detection to identify concrete health, using a dataset with a wide range of surface defects and anomalies including cracks. Notably, using VGG16, which was chosen as the most effective network architecture from the first phase, the study achieves excellent accuracy in classifying concrete health, demonstrating the model's satisfactorily performance even in more complex scenarios.

Real time crack detection using mountable comparative vacuum monitoring sensors

  • Roach, D.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.317-328
    • /
    • 2009
  • Current maintenance operations and integrity checks on a wide array of structures require personnel entry into normally-inaccessible or hazardous areas to perform necessary nondestructive inspections. To gain access for these inspections, structure must be disassembled and removed or personnel must be transported to remote locations. The use of in-situ sensors, coupled with remote interrogation, can be employed to overcome a myriad of inspection impediments stemming from accessibility limitations, complex geometries, the location and depth of hidden damage, and the isolated location of the structure. Furthermore, prevention of unexpected flaw growth and structural failure could be improved if on-board health monitoring systems were used to more regularly assess structural integrity. A research program has been completed to develop and validate Comparative Vacuum Monitoring (CVM) Sensors for surface crack detection. Statistical methods using one-sided tolerance intervals were employed to derive Probability of Detection (POD) levels for a wide array of application scenarios. Multi-year field tests were also conducted to study the deployment and long-term operation of CVM sensors on aircraft. This paper presents the quantitative crack detection capabilities of the CVM sensor, its performance in actual flight environments, and the prospects for structural health monitoring applications on aircraft and other civil structures.

A label-free high precision automated crack detection method based on unsupervised generative attentional networks and swin-crackformer

  • Shiqiao Meng;Lezhi Gu;Ying Zhou;Abouzar Jafari
    • Smart Structures and Systems
    • /
    • 제33권6호
    • /
    • pp.449-463
    • /
    • 2024
  • Automated crack detection is crucial for structural health monitoring and post-earthquake rapid damage detection. However, realizing high precision automatic crack detection in the absence of corresponding manual labeling presents a formidable challenge. This paper presents a novel crack segmentation transfer learning method and a novel crack segmentation model called Swin-CrackFormer. The proposed method facilitates efficient crack image style transfer through a meticulously designed data preprocessing technique, followed by the utilization of a GAN model for image style transfer. Moreover, the proposed Swin-CrackFormer combines the advantages of Transformer and convolution operations to achieve effective local and global feature extraction. To verify the effectiveness of the proposed method, this study validates the proposed method on three unlabeled crack datasets and evaluates the Swin-CrackFormer model on the METU dataset. Experimental results demonstrate that the crack transfer learning method significantly improves the crack segmentation performance on unlabeled crack datasets. Moreover, the Swin-CrackFormer model achieved the best detection result on the METU dataset, surpassing existing crack segmentation models.

Application of curvature of residual operational deflection shape (R-ODS) for multiple-crack detection in structures

  • Asnaashari, Erfan;Sinha, Jyoti K.
    • Structural Monitoring and Maintenance
    • /
    • 제1권3호
    • /
    • pp.309-322
    • /
    • 2014
  • Detection of fatigue cracks at an early stage of their development is important in structural health monitoring. The breathing of cracks in a structure generates higher harmonic components of the exciting frequency in the frequency spectrum. Previously, the residual operational deflection shape (R-ODS) method was successfully applied to beams with a single crack. The method is based on the ODSs at the exciting frequency and its higher harmonic components which consider both amplitude and phase information of responses to map the deflection pattern of structures. Although the R-ODS method shows the location of a single crack clearly, its identification for the location of multiple cracks in a structure is not always obvious. Therefore, an improvement to the R-ODS method is presented here to make the identification process distinct for the beams with multiple cracks. Numerical and experimental examples are utilised to investigate the effectiveness of the improved method.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

측정변형률을 이용한 RC 구조물의 균열검출에 관한 실험적 연구 (An Experimental Study on Crack Detection of RC Structure using Measured Strain)

  • 박기태;박흥석;이규완
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권3호
    • /
    • pp.193-199
    • /
    • 2002
  • 콘크리트 구조물에 발생하는 구조적인 균열은 재하하중에 의하여 콘크리트가 저항할 수 있는 인장강도보다 더 큰 인장강도가 가해졌을 때 콘크리트의 인장영역에서 발생하며, 이는 구조물의 노후화 또는 재하하중에 대한 저항능력이 감소되었음을 의미한다. 그러므로 콘크리트에 발생한 구조적 균열은 구조물에 치명적인 손상을 유발시킬 수 있으며, 구조물의 안전성 확보와 효과적인 유지관리를 위해서는 이를 검출하는 기법에 대한 연구가 반드시 필요한 실정이다. 본 연구에서는 토목계측 분야에서 가장 널리 활용되고 있는 변형률 센서를 철근콘크리트 보에 부착하여 보의 인장부와 압축부의 변형률을 측정하는 실내실험을 수행하였으며, 하중 재하에 따른 변형률의 변화, 측정부위의 탄성계수 변화, 그리고 중립축의 변화 등을 비교 분석하였다. 분석 결과로부터, 측정된 변형률을 이용하여 중립축의 변화 추이를 추정하므로써 가장 효과적으로 균열을 검출할 수 있는 알고리즘을 제시하였다.

동특성 변화를 이용하여 보의 다중 균열 위치 및 크기 해석 (Multi-crack Detection of Beam Using the Change of Dynamic Characteristics)

  • 김정호;이정우;이정윤
    • 한국소음진동공학회논문집
    • /
    • 제25권11호
    • /
    • pp.731-738
    • /
    • 2015
  • This study proposed the method of the multi-crack detection using the sensitivity coefficient matrix which is calculated from the change of eigenvalues and eigenvectors before and after the crack. Each crack is modeled by a rotational springs. The method is applied to the cantilever beam with miulti-crack. The eigenvalues and eigenvectors are determined for different crack locations and depths. The prediction of multi-crack detection are in good agreement with the results of structural reanalysis.