• Title/Summary/Keyword: structural coupling

Search Result 725, Processing Time 0.03 seconds

Investigation on wind stability of three-tower cable-stayed-suspension hybrid bridges under skew wind

  • Xin-Jun Zhang;Li Bowen;Nan Zhou
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.427-443
    • /
    • 2024
  • By using a computational program of three-dimensional aerostatic and aerodynamic stability analysis of long-span bridges under skew wind, the dynamic characteristics and structural stability(including the aerostatic and aerodynamic stability) of a three-tower cable-stayed-suspension hybrid bridge with main span of 1 400 meters are investigated numerically under skew wind, and the skew wind and aerostatic effects on the aerostatic and aerodynamic stability of three-tower cable-stayedsuspension hybrid bridge are ascertained. The results show that the three-tower cable-stayed-suspension hybrid bridge is a longspan structure with greater flexibility, and it is more susceptible to the wind action. The aerostatic instability of three-tower cable-stayed-suspension hybrid bridges is characterized by the coupling of vertical bending and torsion of the girder, and the skew wind does not affect the aerostatic instability mode. The skew wind has positive or negative effects on the aerostatic stability of the bridge, the influence is between -5.38% and 4.64%, and in most cases, it reduces the aerostatic stability of the bridge. With the increase of wind yaw angle, the critical wind speed of aerostatic instability does not vary as the cosine rule as proposed by the skew wind decomposition method, the skew wind decomposition method may overestimate the aerostatic stability, and the maximum overestimation is 16.7%. The flutter critical wind speed fluctuates with the increase of wind yaw angle, and it may reach to the minimum value under the skew wind. The skew wind has limited effect on the aerodynamic stability of three-tower cable-stayed-suspension hybrid bridge, however the aerostatic effect significantly reduces the aerodynamic stability of the bridge under skew wind, the reduction is between 3.66% and 21.86%, with an overall average drop of 11.59%. The combined effect of skew and static winds further reduces the critical flutter wind speed, the decrease is between 7.91% and 19.37%, with an overall average decrease of 11.85%. Therefore, the effects of skew and static winds must be comprehensively considered in the aerostatic and aerodynamic stability analysis of three-tower cable-stayed-suspension hybrid bridges.

Dynamic characteristics analysis of CBGSCC bridge with large parameter samples

  • Zhongying He;Yifan Song;Genhui Wang;Penghui Sun
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.237-248
    • /
    • 2024
  • In order to make the dynamic analysis and design of improved composite beam with corrugated steel web (CBGSCC) bridge more efficient and economical, the parametric self-cyclic analysis model (SCAM) was written in Python on Anaconda platform. The SCAM can call ABAQUS finite element software to realize automatic modeling and dynamic analysis. For the CBGSCC bridge, parameters were set according to the general value range of CBGSCC bridge parameters in actual engineering, the SCAM was used to calculate the large sample model generated by parameter coupling, the optimal value range of each parameter was determined, and the sensitivity of the parameters was analyzed. The number of diaphragms effects weakly on the dynamic characteristics. The deck thickness has the greatest influence on frequency, which decreases as the deck thickness increases, and the deck thickness should be 20-25 cm. The vibration frequency increases with the increase of the bottom plate thickness, the web thickness, and the web height, the bottom plate thickness should be 17-23mm, the web thickness should be 13-17 mm, and the web height should be 1.65-1.7 5 m. Web inclination and Skew Angle should not exceed 30°, and the number of diaphragms should be 3-5 pieces. This method can be used as a new method for structural dynamic analysis, and the importance degree and optimal value range of each parameter of CBGSCC bridge can be used as a reference in the design process.

Structural Analysis and Magnctic Propcrics of Amorphous $Fe_{78}Si_{9}B_{13}$ Alloy (비정질 $Fe_{78}Si_{9}B_{13}$ 합금의 구조와 자성 연구)

  • 이희복;송인명;유성초;임우영
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.3
    • /
    • pp.179-184
    • /
    • 1993
  • The X-ray diffraction pattern of amorphous $Fe_{78}Si_{9}B_{13}$ alloy was analyzed to obtain the radial distribution function (RDF) where the first peak was in the form of Gaussian function. The calculated coordination number of the form of Gaussian functiono The calculated coordination number of the sample is 13.5, the mean distance betweeon near-neighbor atoms $r_{0}$ is $2.595{\AA}$ and a Gaussian parametet ${\delta}r$ indicating near-neighbor atomic distri-bution is $0.27{\AA}$. The temperature dependence of saturated magnetization at low temperature could be explained by spin wave excitations theory yielding the spin wave stiffness constant as $117.8\;meV\;{\AA}^2$. Also, we tried to fit the observed temperature dependence of saturated magnetization with the Handrich's equation of the modified molecular field theory for the amorphous ferromagnet. Nice fittings are obtained when we used the parameters ${\Delta}=0.32$(S=1/2) and ${\Delta}=0.23$(S=1), respectively. Finally, the calculated spin wave stiffness constant using the parameters and the structural data are $149\;meV\;{\AA}^2$ for S=1/2 and $138\;meV\;{\AA}^2$ for S=1, respectively. The mean exchange coupling integral between near-neighbor atoms was estimated to be 17.9 meV for S=1/2 and 6.7 meV for S=1.

  • PDF

Evaluation of Size for Crack around Rivet Hole Using Lamb Wave and Neural Network (초음파 판파와 신경회로망 기법을 적용한 리뱃홀 부위의 균열 크기 평가)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.398-405
    • /
    • 2001
  • The rivet joint has typical structural feature that can be initiation site for the fatigue crack due to the combination of local stress concentration around rivet hole and the moisture trapping. From a viewpoint of structural assurance, it is crucial to evaluate the size of crack around the rivet holes by appropriate nondestructive evaluation techniques. Lamb wave that is one of guided waves, offers a more efficient tool for nondestructive inspection of plates. The neural network that is considered to be the most suitable for pattern recognition has been used by researchers in NDE field to classify different types of flaws and flaw sizes. In this study, clack size evaluation around the rivet hole using the neural network based on the back-propagation algorithm has been tarried out by extracting some features from the ultrasonic Lamb wave for A12024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between the transducer and the specimen by extracting some features related to time md frequency component data in ultrasonic waveform. It was demonstrated clearly that features extracted from the time and frequency domain data of Lamb wave signal were very useful to determine crack size initiated from rivet hole through neural network.

  • PDF

On the Use of Modal Derivatives for Reduced Order Modeling of a Geometrically Nonlinear Beam (모드 미분을 이용한 기하비선형 보의 축소 모델)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.329-334
    • /
    • 2017
  • The structures, which are made up with the huge number of degrees-of-freedom and the assembly of substructures, have a great complexity. In order to increase the computational efficiency, the analysis models have to be simplified. Many substructuring techniques have been developed to simplify large-scale engineering problems. The techniques are very powerful for solving nonlinear problems which require many iterative calculations. In this paper, a modal derivatives-based model order reduction method, which is able to capture the stretching-bending coupling behavior in geometrically nonlinear systems, is adopted and investigated for its performance evaluation. The quadratic terms in nonlinear beam theory, such as Green-Lagrange strains, can be explained by the modal derivatives. They can be obtained by taking the modal directional derivatives of eigenmodes and form the second order terms of modal reduction basis. The method proposed is then applied to a co-rotational finite element formulation that is well-suited for geometrically nonlinear problems. Numerical results reveal that the end-shortening effect is very important, in which a conventional modal reduction method does not work unless the full model is used. It is demonstrated that the modal derivative approach yields the best compromised result and is very promising for substructuring large-scale geometrically nonlinear problems.

Structural and Piezoelectric Properties of MnO2-Doped PZT-PSN Ceramics for Ultrasonic Vibrator (초음파 진동자용 MnO2가 Doping된 PZT-PSN 세라믹스의 구조 및 압전 특성)

  • Cha, Yoo-Jeong;Kim, Chang-Il;Kim, Kyoung-Jun;Jeong, Young-Hun;Lee, Young-Jin;Lee, Hai-Gun;Paik, Jong-Hoo
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.198-202
    • /
    • 2009
  • For use in ultrasonic actuators, we investigated the structural and piezoelectric properties of $(1\;-\;x)Pb(Zr_{0.515}Ti_{0.485})O_3$ - $xPb(Sb_{1/2}Nb_{1/2})O_3$ + 0.5 wt% $MnO_2$ [(1 - x)PZT - xPSN + $MnO_2$] ceramics with a variation of x (x = 0.02, 0.04, 0.06, 0.08). All the ceramics, which were sintered at $1250^{\circ}C$ for 2 h, showed a typical perovskite structure, implying that they were well synthesized. A homogeneous micro structure was also developed for the specimens, and their average grain size was slightly decreased to $1.3{\mu}m$ by increasing x to 0.8. Moreover, a second phase with a pyrochlore structure appeared when x was above 0.06, which resulted in the deterioration of their piezoelectric properties. However, the 0.96PZT-0.04PSN+$MnO_2$ ceramics, which corresponds with a morphotropic phase boundary (MPB) composition in the (1 - x)PZT - xPSN + $MnO_2$ system, exhibited good piezoelectric properties: a piezoelectric constant ($d_{33}$) of 325 pC/N, an electromechanical coupling factor ($k_p$) of 70.8%, and a mechanical quality factor ($Q_m$) of 1779. The specimens with a relatively high curie temperature ($T_c$) of $305^{\circ}C$ also showed a significantly high dielectric constant (${\varepsilon}_r$) value of 1109. Therefore, the 0.96PZT - 0.04PSN + $MnO_2$ ceramics are suitable for use in ultrasonic vibrators.

A MVC Framework for Visualizing Text Data (텍스트 데이터 시각화를 위한 MVC 프레임워크)

  • Choi, Kwang Sun;Jeong, Kyo Sung;Kim, Soo Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.39-58
    • /
    • 2014
  • As the importance of big data and related technologies continues to grow in the industry, it has become highlighted to visualize results of processing and analyzing big data. Visualization of data delivers people effectiveness and clarity for understanding the result of analyzing. By the way, visualization has a role as the GUI (Graphical User Interface) that supports communications between people and analysis systems. Usually to make development and maintenance easier, these GUI parts should be loosely coupled from the parts of processing and analyzing data. And also to implement a loosely coupled architecture, it is necessary to adopt design patterns such as MVC (Model-View-Controller) which is designed for minimizing coupling between UI part and data processing part. On the other hand, big data can be classified as structured data and unstructured data. The visualization of structured data is relatively easy to unstructured data. For all that, as it has been spread out that the people utilize and analyze unstructured data, they usually develop the visualization system only for each project to overcome the limitation traditional visualization system for structured data. Furthermore, for text data which covers a huge part of unstructured data, visualization of data is more difficult. It results from the complexity of technology for analyzing text data as like linguistic analysis, text mining, social network analysis, and so on. And also those technologies are not standardized. This situation makes it more difficult to reuse the visualization system of a project to other projects. We assume that the reason is lack of commonality design of visualization system considering to expanse it to other system. In our research, we suggest a common information model for visualizing text data and propose a comprehensive and reusable framework, TexVizu, for visualizing text data. At first, we survey representative researches in text visualization era. And also we identify common elements for text visualization and common patterns among various cases of its. And then we review and analyze elements and patterns with three different viewpoints as structural viewpoint, interactive viewpoint, and semantic viewpoint. And then we design an integrated model of text data which represent elements for visualization. The structural viewpoint is for identifying structural element from various text documents as like title, author, body, and so on. The interactive viewpoint is for identifying the types of relations and interactions between text documents as like post, comment, reply and so on. The semantic viewpoint is for identifying semantic elements which extracted from analyzing text data linguistically and are represented as tags for classifying types of entity as like people, place or location, time, event and so on. After then we extract and choose common requirements for visualizing text data. The requirements are categorized as four types which are structure information, content information, relation information, trend information. Each type of requirements comprised with required visualization techniques, data and goal (what to know). These requirements are common and key requirement for design a framework which keep that a visualization system are loosely coupled from data processing or analyzing system. Finally we designed a common text visualization framework, TexVizu which is reusable and expansible for various visualization projects by collaborating with various Text Data Loader and Analytical Text Data Visualizer via common interfaces as like ITextDataLoader and IATDProvider. And also TexVisu is comprised with Analytical Text Data Model, Analytical Text Data Storage and Analytical Text Data Controller. In this framework, external components are the specifications of required interfaces for collaborating with this framework. As an experiment, we also adopt this framework into two text visualization systems as like a social opinion mining system and an online news analysis system.

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

A Study The Structural Stability of the Fence Ohgokmun Soswaewon Factor Analysis (소쇄원 오곡문 담장의 구조적 안정에 미치는 요인 분석)

  • Jang, Ik-Sik;Jeon, Hyeong-Soon;Ha, Tae Ju;Lee, Jae-Keun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.4
    • /
    • pp.113-122
    • /
    • 2013
  • In this study, the traditional structure of the impact on the stability analysis. Korean traditional landscape architecture column space of stonework stable composition as the foundation of the fence for a long time been known to fall down and not maintained. The destination of research Ohgokmun Damyang Soswaewon fence which is in harmony with nature is one of the traditional structures that affect its shape without being kept so far came true. This includes our ancestral wisdom and that wisdom can guess guesswork. But I let the traditional reproduction incidence structures frequently. This deviation from the traditional method of construction application of shorthand stand. Thus, the subject of this study, the factors that do not fall down fences Ohgokmun solution is to indirectly gain the weak. In addition, epidemiological studies and the methods of calculation of the inferred physical examination, the results of the analysis were derived through the following. First, the internal factors of the fence Ohgokmun constituting the structural member and the coupling of the scheme. 1) based on stable ground. Greater role in the country rock The fact that the settlement will have no symptoms. 2) to minimize the friction caused by hydrological water to remove the two-pronged process through stone work building form and menu sustaining power in hydrology and flooding made against the bypass channel. 3) due to the load bearing capacity and durability to withstand the strength of the material and the construction of structures in the form of a dispersion of power between each individual to maximize the process of getting traction was applied. Second, external factors Ohgokmun fence the results obtained through the calculation of the dynamics of repair, is greatly affected by the wind and the water gate of the fence, but the action of the structural stability of the lack of power that hurt enough conclusion. In this study, the results of the structure of internal and external influence as well through the structure can be viewed as composed consisting. However, over the next follow-up in terms of climate and environmental factors due to the fact that the fall might.

A Study on the Peel Strength of Silane-treated Silicas-filled Epoxy Adhesives (실란처리 되어진 실리카가 첨가된 에폭시 접착제의 접착박리강도에 관한 연구)

  • Choi, Bo-Kyung;Kim, Hong-Gun;Seo, Min-Kang;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.520-525
    • /
    • 2014
  • In this paper, the effect of silane-treated silicas and epoxidized soybean oil (ESBO) addition on adhesion properties of silicas-filled epoxy adhesives was examined. The silicas were treated by ${\gamma}$-methacryloxy propyltrimethoxy silane (MPS), ${\gamma}$-glycidoxy propyl trimethoxy silane (GPS), and ${\gamma}$-mercapto propyl trimethoxy silane (MCPS). Surface and structural properties of the adhesives were determined by using scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The t-peel strength of the adhesives was estimated using the universal testing machine (UTM). And, the equilibrium spreading pressure, surface free energy, and specific surface area were investigated by BET methods with $N_2$/77 K adsorption. As a result, the peel strength of the adhesives was increased in the presence of silane-treated silicas in the adhesives compared to that of untreated silicas. This result indicated that the silane coupling agent played an important role in improving the dispersion of silicas in epoxy adhesives. And, the adhesives treated by MCPS were superior to the others in adhesion.