• Title/Summary/Keyword: structural behavior response performance

Search Result 267, Processing Time 0.024 seconds

Assessment of collapse safety margin for DDBD and FBD-designed RC frame buildings

  • Alimohammadi, Dariush;Abadi, Esmaeel Izadi Zaman
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.229-244
    • /
    • 2022
  • This paper investigates the seismic performance of buildings designed using DDBD (Direct Displacement based Design) and FBD (Force based Design) approaches from the probabilistic viewpoint. It aims to estimate the collapse capacity of structures and assess the adequacy of seismic design codes. In this regard, (i) IDA (Incremental Dynamic Analysis) curves, (ii) interstory drift demand distribution curves, (iii) fragility curves, and (iv) the methodology provided by FEMA P-695 are applied to examine two groups of RC moment resistant frame buildings: 8-story structures with different plans, to study the effect of different span arrangements; and 3-, 7- and 12-story structures with a fixed plan, to study the dynamic behavior of the buildings. Structural modeling is performed in OpenSees software and validated using the results of an experimental model. It is concluded that increasing the building height would not significantly affect the response estimation of IDA and fragility curves of DDBD-designed structures, while the change in span arrangements is effective in estimating responses. In the investigation of the code adequacy, unlike the FBD approach, the DDBD can satisfy the performance criteria presented in FEMA P-695 and hence provide excellent performance.

Neuro-Fuzzy Modeling Approach for Hybrid Base Isolaton System (하이브리드 면진장치의 뉴로-퍼지 모형화)

  • Kim Hyun-Su;Roschke P. N.;Lee Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.201-208
    • /
    • 2005
  • Neuro-Fuzzy modeling approach is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system consists of friction pendulum systems (FPS) and a magnetorheological (MR) damper. Fuzzy model of the M damper is trained by ANFIS using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses or experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

  • PDF

Design of the Unmanned Solar Vehicle with Quick Response of Maximum Power Point Tracking (최대 전력점 추종의 속응성을 고려한 무인 태양광 자동차 시스템 설계)

  • Shin, Yesl;Lee, Kyo-Beum;Jeon, Yong-Ho;Song, Bong-Sob
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.376-386
    • /
    • 2013
  • This paper proposes an improved Maximum Power Point Tracking method and design methods of unmanned solar vehicle system by parts of hardware, unmanned driving control and power conversion. The hardware design is offered on the weight reduction and structural reliability by using structural analysis software. The technique of curve fitting is applied to unmanned control system due to minimizing the vehicle's behavior. Furthermore, lateral controller applying actuator dynamics is robust enough to prevent performance degradation by measurement noise regarding position and heading angle. The power conversion system contains battery charger system and tapped-inductor boost converter. In the battery charger system, variable step-size MPPT is conducted for quick response of maximum power point tracking. The validity of the proposed algorithm are verified by simulations and experiments.

Nonlinear analysis of a riverine platform under earthquake and environmental loads

  • Farghaly, Ahmed Abdelraheem;Kontoni, Denise-Penelope N.
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.343-354
    • /
    • 2018
  • A realistic FEM structural model is developed to predict the behavior, load transfer, force distribution and performance of a riverine platform under earthquake and environmental loads. The interaction between the transfer plate and the piles supporting the platform is investigated. Transfer plate structures have the ability to redistribute the loads from the superstructure above to piles group below, to provide safe transits of loads to piles group and thus to the soil, without failure of soil or structural elements. The distribution of piles affects the distribution of stress on both soil and platform. A materially nonlinear earthquake response spectrum analysis was performed on this riverine platform subjected to earthquake and environmental loads. A fixed connection between the piles and the platform is better in the design of the piles and the prospect of piles collapse is low while a hinged connection makes the prospect of damage high because of the larger displacements. A fixed connection between the piles and the platform is the most demanding case in the design of the platform slab (transfer plate) because of the high stress values developed.

Seismic performance evaluation of a three-dimensional unsymmetrical reinforced concrete building

  • Lim, Hyun-Kyu;Kang, Jun Won;Lee, Young-Geun;Chi, Ho-Seok
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.2
    • /
    • pp.143-156
    • /
    • 2016
  • Reinforced concrete (RC) structures require advanced analysis techniques for better estimation of their seismic responses, especially in the case of exhibiting complex three-dimensional coupling of torsional and flexural behaviors. This study focuses on validating a numerical approach for evaluating the seismic response of a three-dimensional unsymmetrical RC structure through the participation in the SMART 2013 international benchmark program. The benchmark program provides material properties, detailed drawings of the RC structure, and input ground motions for the seismic response evaluation. In this study, nonlinear constitutive models of concrete and rebar were formed and local tests were conducted to verify the constitutive models in finite element analysis. Elastic calibration of the finite element model of the SMART 2013 RC structure was performed by comparing numerical and experimental results in modal and linear time history analyses. Using the calibrated model, nonlinear earthquake analysis and seismic fragility analysis were performed to estimate the behavior and vulnerability of the RC structure with various ground motions.

Nonlinear impact of negative stiffness dampers on stay cables

  • Shi, Xiang;Zhu, Songye
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.15-38
    • /
    • 2018
  • Negative stiffness dampers (NSDs) have been proven an efficient solution to vibration control of stay cables. Although previous studies usually assumed a linear negative stiffness behavior of NSDs, many negative stiffness devices produce negative stiffness with nonlinear behavior. This paper systematically evaluates the impact of nonlinearity in negative stiffness on vibration control performance for stay cables. A linearization method based on energy equivalent principle is proposed, and subsequently, the impact of two types of nonlinear stiffness, namely, displacement hardening and softening stiffness, is evaluated. Through the Hilbert transform (HT) of free vibration responses, the effects of nonlinear stiffness of an NSD on the modal frequencies, damping ratios and frequency response functions of a stay cable is also investigated. The HT analysis results validate the accuracy of the linearization method.

Application of multi-physics simulation for vibration performance of the hand after contacting the ball with the volleyball player

  • Wang, Yangping;Sun, Shuze
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.681-692
    • /
    • 2022
  • The vibrational response of the two bones in a Volleyball player's arm under ball impact is conducted. The two bones in hand, Ulna and Radius, are modeled as two cylindrical shells. The formulations associated with the shells' vibration are obtained using the energy method. Then, the results are extracted with the aid of the two-dimensional form of DQM in conjunction with Runge-Kutta. The results are validated by means of a published paper. Lastly, the role of parameters in determining vibrational frequency as well as deflection is explored through parametric studies. It was shown that the impactor speed and the time of the impact could be essential factors in determining the vibration behavior of the bones. This work can be used in the further investigation of the behavior of bones and physiological structures.

Bridges dynamic analysis under earthquakes using a smart algorithm

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.329-338
    • /
    • 2022
  • This work addresses the optimization controller design problem combining the AI evolution bat (EB) optimization algorithm with a fuzzy controller in the practical application of a reinforced concrete frame structure. This article explores the use of an intelligent EB strategy to reduce the dynamic response of Lead Rubber Bearing (LRB) composite reinforced concrete frame structures. Recently developed control units for plant structures, such as hybrid systems and semi-active systems, have inherently non-linear properties. Therefore, it is necessary to develop non-linear control methods. Based on the relaxation method, the nonlinear structural system can be stabilized by properly adjusting the parameters. Therefore, the behavior of a closed-loop system can be accurately predicted by determining the behavior of a closed-loop system. The performance and durability of the proposed control method are demonstrated by numerical simulations. The simulation results show that the proposed method is a viable and feasible control strategy for seismically tuned composite reinforced concrete frame structures.

Analysis of composite frame structures with mixed elements - state of the art

  • Ayoub, Ashraf
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.157-181
    • /
    • 2012
  • The paper presents a review of the application of the newly proposed mixed finite element model for seismic simulation of different types of composite frame structures. To evaluate the performance of the element, a comparison with displacement-based and force-based models is conducted. The study revealed that the mixed model is superior to the others in terms of both speed of convergence and numerical stability, and is therefore considered the most practical approach for modeling of composite structures. In this model, the element is derived using independent force and displacement shape functions. The nonlinear response of the frame element is based on the section discretization into fibers with uniaxial material models. The interfacial behavior is modeled using an inelastic interface element. Numerical examples to clarify the advantages of the model are presented for the following structural applications: anchored reinforcing bar problems, composite steel-concrete girders with deformable shear connectors, beam on elastic foundation elements, R/C girders strengthened with FRP sheets, R/C beam-columns with bond-slip, and prestressed concrete girders. These studies confirmed that the model represents a major advancement over existing elements in simulating the inelastic behavior of composite structures.

Application of an extended Bouc-Wen model for hysteretic behavior of the RC structure with SCEBs

  • Dong, Huihui;Han, Qiang;Du, Xiuli
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.683-697
    • /
    • 2019
  • The reinforced concrete (RC) structures usually suffer large residual displacements under strong motions. The large residual displacements may substantially reduce the anti-seismic capacity of structures during the aftershock and increase the difficulty and cost of structural repair after an earthquake. To reduce the adverse residual displacement, several self-centering energy dissipation braces (SCEBs) have been proposed to be installed to the RC structures. To investigate the seismic responses of the RC structures with SCEBs under the earthquake excitation, an extended Bouc-Wen model with degradation and self-centering effects is developed in this study. The extended model realized by MATLAB/Simulink program is able to capture the hysteretic characteristics of the RC structures with SCEBs, such as the energy dissipation and the degradation, especially the self-centering effect. The predicted hysteretic behavior of the RC structures with SCEBs based on the extended model, which used the unscented Kalman filter (UKF) for parameter identification, is compared with the experimental results. Comparison results show that the predicted hysteretic curves can be in good agreement with the experimental results. The nonlinear dynamic analyses using the extended model are then carried out to explore the seismic performance of the RC structures with SCEBs. The analysis results demonstrate that the SCEB can effectively reduce the residual displacements of the RC structures, but slightly increase the acceleration.