• Title/Summary/Keyword: structural and thermal analysis

Search Result 1,047, Processing Time 0.033 seconds

Finite Element Analysis for Iron-Making Furnace (제철용 고로의 유한요소해석)

  • 이만승;백점기;이제명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.245-253
    • /
    • 2004
  • There has been recent demand for extending the life of age-degraded structures and equipment by such techniques as diagnosis, maintenance, safety assessment, and estimating residual life on iron-making plants and hydraulic, thermal, and nuclear power plants. These techniques take into account comprehensive scenarios that may cause malfunction and structural damage and allow an assessment of risk based on the likely scenarios. In particular the safety assessment and residual life estimation of age-degraded ships and equipment facilities require consideration of various factors such as mechanical and thermal stresses, corrosion, hardness, load variation due to changes of operating condition, crack generation and strength reduction of material by fatigue. In this study, a detail thermal stress analysis, one of useful techniques of safety assessment and maintenance, is performed on a blast furnace by using general FEM code (MSC/NASTRAN).

  • PDF

Analysis Study for the Determination of Optimized Block Size in Mass Concrete (매스콘크리트에서 최적의 타설 단면 결정을 위한 해석적 연구)

  • 김진근;김상철;이두재;김국한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.422-429
    • /
    • 1997
  • Thermal stress induced by hydration heat may produce cracks in mass concrete structure, which can result in structural problems as well as bad appearance. To minimize crack occurrence in massive structural, thus, the study put an emphasis on the determination of optimized lift height and block size. In the parametric study different sizes and lift heights were used to measure the magnitudes of hydration heat and thermal stresses for 3 different types of concrete fabricated with 1 pure cement and 2 blended Portland cements. As a result of analysis. it was found that magnitude of hydration heat and the occurrence of thermal cracks depend on the restriction conditions and material characteristics, especially adiabatic material parameters. It was also found that optimized lift height and block size can be determined from an appropriate combination of the degree of inner and outer structural restrictions.

  • PDF

Progressive Inelastic Deformation Characteristics of Cylindrical Structure with Plate-to-Shell Junction Under Moving Temperature Front

  • Lee, Hyeong-Yeon;Kim, Jong-Bum
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.400-408
    • /
    • 2003
  • A study on the progressive inelastic deformation behavior of the 316 L stainless steel cylindrical structure with plate-to-shell junction under moving temperature front was carried out by structural test and analysis. The structural test intends to simulate the thermal ratcheting behavior occurring at the reactor baffle of the liquid metal reactor as free surface of hot sodium pool moves up and down under plant transients. The thermal ratchet load that heats the specimen up to 550$^{\circ}C$ was applied repeatedly and residual deformation was measured. The thermal ratcheting test was carried out with two types of cylindrical structures, one with plate to-shell junction and the other without the junction to investigate the effects of the geometric discontinuities on the global ratcheting deformation. The temperature distributions of the test specimens were measured and were used for the ratcheting analysis. The ratchet deformations were analyzed with the constitutive equation of the non-linear combined hardening model. The analysis results were in good agreement with those of the structural tests.

The Structural Analysis of Three-Way Catalyst Substrate using Coupled Thermal-Fluid-Structural Analysis (열유동구조연성해석을 이용한 삼원촉매담체의 구조 해석)

  • Lee, Sung-Riong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3035-3043
    • /
    • 2015
  • This study evaluates the thermal structural safety of the three-way catalyst(TWC) substrate for domestic passenger cars. Thermal-fluid boundary conditions on the TWC substrate were determined by D-optimal DOE. The thermal stresses on the TWC substrate were calculated by the temperature distribution obtained from the CFD results. The safety factors of the TWC substrate were determined by statistical strength and stress distributions and estimated to be 0.275. The thermal stresses for TWC substrate exceeded the strength of the material. Therefore, it is necessary to redesign the TWC substrate because it has much shorter service life than design life.

Structural Durability Analysis due to Hole Configuration Variation of Bike Disc Brake (자전거 디스크 브레이크 구멍 형상 변화에 따른 구조적 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.44-49
    • /
    • 2014
  • As expansion and contraction of bike disk brake are happened continuously by temperature at repeated urgent braking. In this study, 3 kinds of model are designed according to configurations of holes and thermal durabilities on bike disk brake are investigated by comparing 3 models through temperature and thermal analyses. Maximum thermal stress happened at the disk contacted with pad and the connection part fixing disk rotor. Instead of initial state, the temperature is uniformly distributed at transient state. As the area of hole at disk rotor face becomes wider, thermal stress becomes lower at the initial state. On the other hand, in case the number of holes increases, thermal stress becomes lower at the elapsed time of 100 seconds. The thermal durability of bike disk brake can be improved by applying this study result with configurations of holes.

A Study on the Verifying Structural Safety of Satellite Structure by Coupled Load Analysis (열변형으로 인한 인공위성 관측장비 지향오차 연구)

  • Kim, Sun-Won;Hyun, Bum-Seok;Kim, Chang-Ho;Hwang, Do-Soon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.75-79
    • /
    • 2010
  • Satellite structure is distorted by thermal load in orbit. The structural distortion induces the pointing errors of observation unit that is difference between initial pointing direction at ground integration and at in-orbit. In that case, satellite is not able to point along required direction. As observation capability becomes higher, structural distortion due to thermal load should be smaller to achieve successful mission. In this paper, the method to predict pointing error and results are described.

An Evaluation on Thermal-Structural Behavior of Nozzle Assembly during Burning Time (연소시간 중 노즐조립체의 열-구조적 거동분석에 관한 연구)

  • Ro, Younghee;Seo, Sanggyu;Jeong, Seongmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.536-542
    • /
    • 2017
  • A great deal of difficulty is encountered in the thermo-mechanical analyses of nozzle assembly for solid propellant rocket motors. The main issue in this paper is the modeling of the boundary conditions and the connections between the various components-gaps, relative movements of the components, contacts, friction, etc. This paper evaluated the complex phenomena of nozzle assembly during burning time with co-simulation which include fluid, thermal surface reaction/ablation and structural analysis. The validity of this approach was verified by comparison of analysis results with measured strains.

  • PDF

Stress and Thermal Analyses of Pressure Housing of SMART CEDM (SMART제어봉구동장치의 압력용기에 대한 응력 및 열해석)

  • 조대희;유제용;김지호;김종인
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.343-350
    • /
    • 2002
  • The structural stability of pressure housing of SMART CEDM forming pressure boundary must be evaluated. In this paper, the stress and thermal analyses of the upper pressure housing of CEDM are performed for design pressure, hydraulic test pressure and thermal loading. Finite element and boundary condition were generated from the model which is made by I-DEAS program and the stress and thermal analyses were performed by ANSYS Program. The upper Pressure housing was analysed using 2D axisymmetric model because it is symmetry about an axis. The stress values obtained by analysis were compared with the stress intensity limit of ASME and KEPIC MNB standard.

  • PDF

An advanced software interface to make OpenSees for thermal analysis of structures more user-friendly

  • Seong-Hoon Jeong;Ehsan Mansouri;Nadia Ralston;Jong-Wan Hu
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.127-138
    • /
    • 2024
  • In this paper, structural behavior under fire conditions is comprehensively examined, and a novel software interface for testing interfaces efficiently is developed and validated. In order to accurately assess the response of structures to fire scenarios, advanced simulation techniques and modeling approaches are incorporated into the study. This interface enables accurate heat transfer analysis and thermo-mechanical simulations by integrating software tools such as CSI ETABS, CSI SAP2000, and OpenSees. Heat transfer models can be automatically generated, simulation outputs processed, and structural responses interpreted under a variety of fire scenarios using the proposed technique. As a result of rigorous testing and validation against established methods, including Cardington tests on scales and hybrid simulation approaches, the software interface has been proven to be effective and accurate. The analysis process is streamlined by this interface, providing engineers and researchers with a robust tool for assessing structural performance under fire conditions.