• 제목/요약/키워드: structural and joint flexibility

검색결과 36건 처리시간 0.018초

Telerobotic operations of structurally flexible, long-reach manipulators

  • Kwon, Dong-Soo;Hwang, Dong-Hwan;Badcock, Scott-M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.825-829
    • /
    • 1993
  • As a part of the Department of Energy's Environmental Restoration and Waste Management Program, long-reach manipulators are being considered for the retrieval of waste from large storage tanks. Long-reach manipulators may have characteristics significantly different from those of typical industrial robots because of the flexibility of long links needed to cover the large workspace. To avoid structural vibrations during operation, control algorithms employing various types of shaping filters were investigated. A new approach that uses imbedded simulation was developed and compared with others. In the new approach, generation of joint trajectories considering link flexibility was also investigated.

  • PDF

A method for evaluation of longitudinal joint connections of decked precast concrete girder bridges

  • Smith, Matthew Z.;Li, Yue;Bulleit, William M.
    • Structural Engineering and Mechanics
    • /
    • 제40권3호
    • /
    • pp.297-313
    • /
    • 2011
  • As bridge conditions in the United States continue to deteriorate, rapid bridge replacement procedures are needed. Decked precast prestressed concrete (DPPC) girders are used for rapid bridge construction because the bridge deck is precast with the girders eliminating the need for a cast-in-place slab. One of the concerns with using DPPC girders as a bridge construction option is the durability of the longitudinal joints between girders. The objectives of this paper were to propose a method to use a spring element modeling procedure for representing welded steel connector assemblies between adjacent girders in DPPC girder bridges, perform a preliminary study of bridge performance under multiple loading scenarios and bridge configurations, and discuss model flexibility for accommodating future field data for model verification. The spring elements have potential to represent the contribution of joint grout materials by altering the spring stiffness.

Multiobjective size and topolgy optimization of dome structures

  • Tugrul, Talaslioglu
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.795-821
    • /
    • 2012
  • The size and topology of geometrically nonlinear dome structures are optimized thereby minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity. Design constraints are implemented from provisions of American Petroleum Institute specification (API RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by use of arc-length technique as a nonlinear structural analysis method are checked at each load increment. Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is correspondingly neglected. In order to solve this complex design optimization problem with multiple objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal) members into the geometrical configuration of dome structure provides a weight-saving dome designation with higher load-carrying capacity. The proposed optimization approach is recommended for the design optimization of geometrically nonlinear dome structures.

LAP 구조물 결합부의 설계치 확보를 위한 동역학적 해석 (Dynamic Analysis of Design Data for Structural Lap Joint)

  • 윤성호
    • 소음진동
    • /
    • 제8권1호
    • /
    • pp.57-74
    • /
    • 1998
  • 구조체의 연결부위에서 미지의 결합강성으로 인하여, 실험과 유한 요소법으로 구한 모달 매개변수들은 종종 일치하지 않는다. 본 논문은 실험으로 추출된 동특성 데이타에 근거하여, 해석적인 방법을 통해 새로운 모델링 방법을 제시하고 있다. 대표적인 연결방법으로 리벳을 이용한 Lap이음보에서 동강성을 측정하기 위한 비선형 진동실험이 제안 되었으며, 이를 Lap 이음판에 적용하기 위하여 동강성에 해당하는 설계변수로서 빔요소를 도입하였다. 이 유한요소 모델링은 범용 패키지인 PATRAN과 ABAQUS를 사용하였으며, 빔요소의 직경을 실험치의 고유진동수와 일치하도록 조절함으로써 직경의 최적치 경향을 관찰하였다. 제시된 모델링 기법과 기존의 모델링 기법으로 얻은 결과치들을 실험치와 비교하였다.

  • PDF

일체식 및 반일체식 복합슬래브 교량의 구조거동 분석에 관한 연구 (A Study of Structural Behavior Analysis of Inegral and Semi-Integral Hybrid Slab Bridge)

  • 최영국;장일영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권1호
    • /
    • pp.123-128
    • /
    • 2018
  • 기존 거더 형식의 교량이나 슬래브 교량에서는 신축이음장치, 받침, 역T형 교대 및 별도의 접속슬래브 구조를 이루는 시스템으로 이루어져 있다. 이러한 시스템은 신축이음부의 빈번한 파손으로 인한 비용증가, 모멘트 재분배가 낮은 구조로 인한 내구성 감소 등의 문제가 있다. 상기의 문제를 개선하기 위해 일체식 및 반일체식 복합 교량을 제안하고 구조해석을 통해 안전성을 검토하였다. 검토결과 단면강성은 작지만 접속슬래브와 본체 구조가 연속 강결된 다연속 프레임 구조계 형성과 상부구조의 경간과 단면강성의 균형으로 인하여 모멘트재분배와 힘전달이 확실하게 이루어져 기존교량에 비해 구조안전성 높은 구조임을 확인하였다.

발가락과 뒤꿈치 조인트를 갖는 유연한 로봇 발 설계 (Design of a Flexible Robot Foot with Toes and Heel Joints)

  • 박진희;김현술;권상주
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.446-454
    • /
    • 2011
  • In terms of the anatomy and mechanics of the human foot, a flexible robot foot with toes and heel joints is designed for a bipedal walking robot. We suggest three design considerations in determining foot design parameters which are critical for walking stability. Those include the position of the frontal toe, the stiffness of toes and heels, and the position of the ankle joint. Compared with the conventional foot with flat sale, the proposed foot is advantageous for human-like walking due to the inherent structural flexibility and the reasonable parameter values. Simulation results are provided to determine the design parameters and also show that the proposed foot enables smaller energy consumption.

Design and analysis of non-linear space frames with semi-rigid connections

  • Sagiroglu, Merve;Aydin, Abdulkadir Cuneyt
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1405-1421
    • /
    • 2015
  • Semi-rigid connections are the actual behavior of beam-to-column connections in steel frames. However, the behavior of semi-rigid connections is not taken into account for the simplicity in the conventional analysis and design of steel frames. A computer-based analysis and design has been studied for the three-dimensional steel frames with semi-rigid connections. The nonlinear analysis which includes the effects of the flexibility of connections is used for this study. It is designed according to the buckling and combined stress constraints under the present loading after the joint deformations and the member end forces of the space frame are determined by the stiffness matrix method. The semi-rigid connection type is limited to the top and bottom angles with a double web angle connection. The Frye-Morris polynomial model is used to describe the non-linear behavior of semi-rigid connections. Various design examples are presented to demonstrate the efficiency of the method. The results of design and analysis of unbraced semi-rigid frames are compared to the results of unbraced rigid frames under the same design requirements.

Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements method

  • Ayman E., Nabawy;Ayman M.M., Abdelhaleem;Soliman. S., Alieldin;Alaa A., Abdelrahman
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.697-713
    • /
    • 2022
  • In the context of the finite elements method, the dynamic behavior of porous functionally graded double wishbone vehicle suspension structural system incorporating joints flexibility constraints under road bump excitation is studied and analyzed. The functionally graded material properties distribution through the thickness direction is simulated by the power law including the porosity effect. To explore the porosity effects, both classical and adopted porosity models are considered based on even porosity distribution pattern. The dynamic equations of motion are derived based on the Hamiltonian principle. Closed forms of the inertia and material stiffness components are derived. Based on the plane frame isoparametric Timoshenko beam element, the dynamic finite elements equations are developed incorporating joint flexibilities constraints. The Newmark's implicit direct integration methodology is utilized to obtain the transient vibration time response under road bump excitation. The presented procedure is validated by comparing the computational model results with the available numerical solutions and an excellent agreement is observed. Obtained results show that the decrease of porosity percentage and material graduation tends to decrease the deflection as well as the resulting stresses of the control arms thus improving the dynamic performance and increasing the service lifetime of the control arms.

모듈방식 FRP 선체를 위한 Moulding-In 개념 기반의 접합 이음부 개발에 관한 연구 (On the Development of Bonded Joints for Modular FRP Hulls using Moulding-In Concept)

  • 정한구
    • 한국전산구조공학회논문집
    • /
    • 제30권6호
    • /
    • pp.531-539
    • /
    • 2017
  • 전통적인 FRP 선체 제작에는 mould가 요구되며, mould의 높은 제작비용은 FRP 선박 제작자에게 비용부담을 주고 있다. 이를 극복하기 위한 방안으로 강선 건조에서 사용되는 블록 혹은 모듈 방식의 제작기법에 착안한 modular construction 방안이 제시되었다. 이 제작방안을 FRP 선체에 효율적으로 적용하기 위해서는 설계 및 제작 측면에서 간략하면서도 구조적 안정성을 갖는 접합 이음부 개발이 이루어져야 한다. 따라서, 본 논문에서는 모듈방식의 FRP 선체 제작을 위해 moulding-in 개념을 기반으로 한 경제적인 접합 이음부 개발에 관한 연구를 수행하였다. FRP 샌드위치 판을 대상으로 step, scarf-step 그리고 scarf 이음부 형상을 갖는 moulded-in을 수지주입식진공성형 공정에 도입하여 성공적으로 접합된 FRP 샌드위치 판을 제작하였다. 이에 대해 구조적 안정성 평가를 목적으로 인장 및 4점 굽힘 시험 그리고 유한요소해석을 수행하였다. 시험과 해석결과에 대한 비교 연구를 통해 본 연구에서 개발된 접합 이음 내용이 모듈방식의 FRP 선체 제작에 적용 가능함을 확인할 수 있었다.

Rock bridge fracture model and stability analysis of surrounding rock in underground cavern group

  • Yu, Song;Zhu, Wei-Shen;Yang, Wei-Min;Zhang, Dun-Fu;Ma, Qing-Song
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.481-495
    • /
    • 2015
  • Many hydropower stations in southwest China are located in regions of brittle rock mass with high geo-stresses. Under these conditions deep fractured zones often occur in the sidewalls of the underground caverns of a power station. The theory and methods of fracture and damage mechanics are therefore adopted to study the phenomena. First a flexibility matrix is developed to describe initial geometric imperfections of a jointed rock mass. This model takes into account the area and orientation of the fractured surfaces of multiple joint sets, as well as spacing and density of joints. Using the assumption of the equivalent strain principle, a damage constitutive model is established based on the brittle fracture criterion. In addition the theory of fracture mechanics is applied to analyze the occurrence of secondary cracks during a cavern excavation. The failure criterion, for rock bridge coalescence and the damage evolution equation, has been derived and a new sub-program integrated into the FLAC-3D software. The model has then been applied to the stability analysis of an underground cavern group of a hydropower station in Sichuan province, China. The results of this method are compared with those obtained by using a conventional elasto-plastic model and splitting depth calculated by the splitting failure criterion proposed in a previous study. The results are also compared with the depth of the relaxation and fracture zone in the surrounding rock measured by field monitoring. The distribution of the splitting zone obtained both by the proposed model and by the field monitoring measurements are consistent to the validity of the theory developed herein.