• Title/Summary/Keyword: structural active vibration control

Search Result 233, Processing Time 0.023 seconds

Structural Vibration Control using Instantaneous Optimal Control (순간 최적제어에 의한 구조물의 진동제어)

  • 최창근;권대건
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.365-372
    • /
    • 1998
  • Recently, constructions of large and slender structures have been increased owing to the advancement of the structural technologies and that of the new light-weight and high-strength construction materials. Consequently, vibration problems of those slender structures have become a new issue in the area of structural engineering. Active control for those structures is the method that keeps the structures safe from the external loads, especially dynamic loads, by enforcing active forces derived from control devices. In this paper, a procedure for the instantaneous optimal control for structural vibration is presented. Numerical method and experiment are performed for evaluating the effectiveness of active control for reducing vibration of structures.

  • PDF

The Determination of Transducer Locations for Active Structural Acoustic Control of the Radiated Sound from Vibrating Plate (평판에서 방사되는 소음의 능동구조소음제어를 위한 변환기의 위치결정)

  • 김흥섭;홍진석;이충휘;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.694-701
    • /
    • 2002
  • In this paper, through the study on locations of structural transducers for active control of the radiated sound from the vibrating plate, the active structural acoustic control (ASAC) system is proposed. And, for the evaluation of the proposed location, the experiment of the active structural acoustic control is implemented using the multi-channel filtered-x LMS algorithm and an additional filter (Acoustic Prediction Filter) to estimate the radiated sound using the acceleration signals of the plate. The structural transducers are piezoceramic actuator (PZT) and accelerometer. PZT is used as an actuator to reduce the vibration and the radiated sound. To maximize the control performance, each PZT actuator is located at the position that has the largest control sensitivity of the plate bending moment in the direction of x and y coordinates and the optimal PZT location is validated experimentally. Also, to find the acoustic prediction filter accurately, two accelerometers are located at the positions that have the largest radiation efficiencies of the plate, and the proposed locations are validated by simulation using the Rayleigh integral. The multi-channel filtered-x LMS algorithm is introduced to control a complex 2-D structural vibration mode. Finding the locations of structural transducers for active structural acoustic control of the radiated sound, the active structural acoustic control (ASAC) system can be presented and validated by experiments using a real time control system.

Active Vibration Control of a Structure with Output Feedback Based on Simultaneous Optimization Design Method

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.57-64
    • /
    • 2000
  • Recent advances in the field of control theory have enabled us to design active vibration control systems for various structures. In many studies, the controller used to suppress vibration has been synthesized for the given mathematical model of structure. In these cases, the designer has not been able to utilize the degree of freedom to adjust the structural parameters of the control object. To overcome this problem, so called 'Structure/Control Simultaneous Optimization Method' is used. In this context of view, this paper is concerned with the active vibration control of bridge towers, platforms and ocean vehicles etc. Simultaneous design method is used to achieve optimal system performance. Here, a general framework for the simultaneous design problem of output feedback case is introduced based on LMI (Linear Matrix Inequality). The simulation results show that the proposed design method achieves desirable control performance.

  • PDF

An Experimental Study on a Magneto-Rheological Fluid Damper for Structural Control Subject to Base Excitation (지반 기진력을 받는 구조물의 진동제어를 위한 자기유변 감쇠기의 실험적 연구)

  • 김병현;정종안;문석준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.767-773
    • /
    • 2004
  • Semi-active control systems have attracted a great deal of attention in recent years, because they offer the adaptability of active devices without requiring large Power sources. One of the most Promising semi-active devices proposed for structural control is magneto-rheological fluid dampers (MR damper). In this paper, an MR damper having the capacity of about 1 ton was designed and fabricated. and series of tests were performed to grasp the fundamental Performance characteristics of it. It was also applied to a 6-story steel structure under random excitation and 3-different seismic excitations for the confirmation of its validity on structural vibration absorption. Through this study, the techniques and know-hows for MR damper production were acquired.

Development of Active Control System for Structural Vibration Using a Hydraulic Actuator (유압식 Actuator를 이용한 구조물 진동의 능동제어시스템 개발)

  • S.J. Moon;T.Y. Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.94-102
    • /
    • 1995
  • The active control system of structural vibration using a hydraulic actuator is developed. The developed system consists of three parts : a hydraulic unit, an actuator unit and a control unit. Structural vibration is sensored by the accelerometer attached to the structure and reduced by the optimally controlled motion of active mass giving anti-phase inertia force to the structure. It is experimentally confirmed that the vibration level of model structure is reduced to about 1/6 by the developed active control system.

  • PDF

Application of Linear Oscillatory Actuator to Active Structural Vibration Control (Linear oscillatory actuator를 이용한 구조물 진동의 능동 제어 연구)

  • 정태영;문석준;정종안;박희창;장석명
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.311-317
    • /
    • 1997
  • In this paper the active vibration control system using a linear oscillatory actuator(LOA) is studied to suppress structural vibration. In the LOA, the AC-power-energized armature generates a shift field in an air gap, which produces a oscillating force to the mover in the magnetic field generated by high density permanent magnets. LOA has relatively simple structure with almost maintenance free, compared with a hydraulic actuator. Performance test of the active vibration control system using a LOA is carried out on a steel test structure under base excitation. From this test, it is confirmed that the acceleration level of the test structure is drastically reduced near the resonant region.

  • PDF

Active mass damper control for cable stayed bridge under construction: an experimental study

  • Chen, Hao;Sun, Zhi;Sun, Limin
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.141-156
    • /
    • 2011
  • A cable stayed bridge under construction has low structural damping and is not as stable as the completed bridge. Control countermeasures, such as the installation of energy dissipating devices, are thus required. In this study, the general procedure and key issues on adopting an active control device, the active mass damper (AMD), for vibration control of cable stayed bridges under construction were studied. Taking a typical cable stayed bridge as the prototype structure; a lab-scale test structure was designed and fabricated firstly. A baseline FEM model was then setup and updated according to the modal parameters measured from vibration test on the structure. A numerical study to simulate the bridge-AMD control system was conducted and an efficient LQG-based controller was designed. Based on that, an experimental implementation of AMD control of the transverse vibration of the bridge model was performed. The results from numerical simulation and experimental study verified that the AMD-based active control was feasible and efficient for reducing dynamic responses of a complex structural system. Moreover, the discussion made in this study clarified some critical problems which should be addressed for the practical implementation of AMD control on real cable-stayed bridges.

Active Noise Control Using Sensory Actuator (자기감응 액추에이터를 이용한 능동소음제어)

  • Go, Byeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1573-1581
    • /
    • 1996
  • This paper present as experimental demonstratio of DSP and a sensory actuator that is used to actively control sound transmission/radiation through a vibrating plate. A plane acoustic wave incident on a clamped, thin circular plate was used as a noise source, and a sensory actuator bounded to the plate was used to control and sense vibration of the plate. The sound transmission reduction problem was tranformed as a structural vibration control problem that actively control the structural vibration modes coupled to acoustic modes. The results show that the first structural vibration mode is controlled with a reduction of 78 percent in the displacement and velocity of the plate. This corresponds to a 13dB reduction in the acoustic response. These experimental results indicate that a sensory actuator bounded to the plate can be employed to attenuate the sound transmitted to radiated from the plate.

Integration of health monitoring and vibration control for smart building structures with time-varying structural parameters and unknown excitations

  • Xu, Y.L.;Huang, Q.;Xia, Y.;Liu, H.J.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.807-830
    • /
    • 2015
  • When a building structure requires both health monitoring system and vibration control system, integrating the two systems together will be cost-effective and beneficial for creating a smart building structure with its own sensors (nervous system), processors (brain system), and actuators (muscular system). This paper presents a real-time integrated procedure to demonstrate how health monitoring and vibration control can be integrated in real time to accurately identify time-varying structural parameters and unknown excitations on one hand, and to optimally mitigate excessive vibration of the building structure on the other hand. The basic equations for the identification of time-varying structural parameters and unknown excitations of a semi-active damper-controlled building structure are first presented. The basic equations for semi-active vibration control of the building structure with time-varying structural parameters and unknown excitations are then put forward. The numerical algorithm is finally followed to show how the identification and the control can be performed simultaneously. The results from the numerical investigation of an example building demonstrate that the proposed method is feasible and accurate.

Analysis and active control for wind induced vibration of beam with ACLD patch

  • Li, Jinqiang;Narita, Yoshihiro
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.399-417
    • /
    • 2013
  • The structural vibration suppression with active constrained layer damping (ACLD) was widely studied recently. However, the literature seldom concerned with the vibration control on flow-induced vibration using active constrained layer. In this paper the wind induced vibration of cantilevered beam is analyzed and suppressed by using random theory together with a velocity feedback control strategy. The piezoelectric material and frequency dependent viscoelastic layer are used to achieve effective active damping in the vibration control. The transverse displacement and velocity in time and frequency domains, as well as the power spectral density and the mean-square value of the transverse displacement and velocity, are formulated under wind pressure at variable control gain. It is observed from the numerical results that the wind induced vibration can be significantly suppressed by using a small outside active voltage on the constrained layer.