• Title/Summary/Keyword: strongly Fr$\acute{e}$chet

Search Result 5, Processing Time 0.025 seconds

STRONG VERSIONS OF κ-FRÉCHET AND κ-NET SPACES

  • CHO, MYUNG HYUN;KIM, JUNHUI;MOON, MI AE
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.549-557
    • /
    • 2015
  • We introduce strongly ${\kappa}$-$Fr{\acute{e}}chet$ and strongly ${\kappa}$-sequential spaces which are stronger than ${\kappa}$-$Fr{\acute{e}}chet$ and ${\kappa}$-net spaces respectively. For convenience, we use the terminology "${\kappa}$-sequential" instead of "${\kappa}$-net space", introduced by R.E. Hodel in [5]. And we study some properties and topological operations on such spaces. We also define strictly ${\kappa}$-$Fr{\acute{e}}chet$ and strictly ${\kappa}$-sequential spaces which are more stronger than strongly ${\kappa}$-$Fr{\acute{e}}chet$ and strongly ${\kappa}$-sequential spaces respectively.

GENERALIZED PROPERTIES OF STRONGLY FRÉCHET

  • Cho, Myung-Hyun;Kim, Jun-Hui;Moon, Mi-Ae
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.85-92
    • /
    • 2012
  • Our purpose of this paper is to introduce and study some properties related to approximations by points. More precisely, we introduce strongly AP, strongly AFP, strongly ACP, and strongly WAP properties which are stronger than AP, AFP, ACP, and WAP respectively. Also they are weaker than strongly Fr$\acute{e}$chet property. And we study general properties and topological operations on such spaces and give some examples.

REGULARIZATION FOR THE PROBLEM OF FINDING A SOLUTION OF A SYSTEM OF NONLINEAR MONOTONE ILL-POSED EQUATIONS IN BANACH SPACES

  • Tran, Thi Huong;Kim, Jong Kyu;Nguyen, Thi Thu Thuy
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.849-875
    • /
    • 2018
  • The purpose of this paper is to present an operator method of regularization for the problem of finding a solution of a system of nonlinear ill-posed equations with a monotone hemicontinuous mapping and N inverse-strongly monotone mappings in Banach spaces. A regularization parameter choice is given and convergence rate of the regularized solutions is estimated. We also give the convergence and convergence rate for regularized solutions in connection with the finite-dimensional approximation. An iterative regularization method of zero order in a real Hilbert space and two examples of numerical expressions are also given to illustrate the effectiveness of the proposed methods.

WEAK AND STRONG CONVERGENCE OF MANN'S-TYPE ITERATIONS FOR A COUNTABLE FAMILY OF NONEXPANSIVE MAPPINGS

  • Song, Yisheng;Chen, Rudong
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1393-1404
    • /
    • 2008
  • Let K be a nonempty closed convex subset of a Banach space E. Suppose $\{T_{n}\}$ (n = 1,2,...) is a uniformly asymptotically regular sequence of nonexpansive mappings from K to K such that ${\cap}_{n=1}^{\infty}$ F$\(T_n){\neq}{\phi}$. For $x_0{\in}K$, define $x_{n+1}={\lambda}_{n+1}x_{n}+(1-{\lambda}_{n+1})T_{n+1}x_{n},n{\geq}0$. If ${\lambda}_n{\subset}[0,1]$ satisfies $lim_{n{\rightarrow}{\infty}}{\lambda}_n=0$, we proved that $\{x_n\}$ weakly converges to some $z{\in}F\;as\;n{\rightarrow}{\infty}$ in the framework of reflexive Banach space E which satisfies the Opial's condition or has $Fr{\acute{e}}chet$ differentiable norm or its dual $E^*$ has the Kadec-Klee property. We also obtain that $\{x_n\}$ strongly converges to some $z{\in}F$ in Banach space E if K is a compact subset of E or there exists one map $T{\in}\{T_{n};n=1,2,...\}$ satisfy some compact conditions such as T is semi compact or satisfy Condition A or $lim_{n{\rightarrow}{\infty}}d(x_{n},F(T))=0$ and so on.