• Title/Summary/Keyword: stripline

Search Result 114, Processing Time 0.021 seconds

Design of a Ku-Band Quasi-Yagi Antenna Array Using an Ultra-Wideband Balun (초광대역 발룬을 이용한 Ku 대역 Quasi-Yagi 배열 안테나 설계)

  • Woo, Dong-Sik;Kim, Young-Gon;Cho, Young-Ki;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.207-213
    • /
    • 2008
  • A simplified design procedure for quasi-Yagi antenna arrays using an ultra-wideband balun is presented. The proposed antenna design procedure is based on the simple impedance matching among antenna components: i.e., balun, feed, and antenna This new broadband and high gain antenna array is possible due to the ultra-wideband performance of the balun. As design examples, wideband $1\times4$ and $1\times8$ quasi-Yagi antenna arrays are successfully designed and implemented in Ku-band with frequency bandwidths of about 50 % and antenna gains of 9$\sim$10 dBi and 11$\sim$12 dBi, respectively. And the simulated and measured results demonstrate wide bandwidths and good radiation properties. These antenna arrays can be applied to various phased-array and spatial power combining systems.

A Design of Quasi-Yagi Antenna Using the New Ultra-Wideband Microstrip-to-CPS Transitions (새로운 초광대역 마이크로스트립-CPS 전이 구조를 이용한 Quasi-Yagi 안테나 설계)

  • Woo, Dong-Sik;Kim, Young-Gon;Cho, Young-Ki;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.937-942
    • /
    • 2007
  • A new, systematic, simplified design procedure for quasi-Yagi antennas is presented. The design is based on the simple impedance matching among antenna components: i.e., transition, feed, and antenna. This new antenna design is possible due to the newly developed ultra-wideband transition. As design examples, wideband quasi-Yagi antennas are successfully designed and implemented in Ku- and Ka-bands with frequency bandwidths of 53.2% and 29.1%, and antenna gains of $4{\sim}5 dBi$ and $ 5{\sim}5.6 dBi$, respectively. The design method can be applied to other balanced antennas and their arrays.

Design of a Diode Detector Using Ultra-Wideband Transitions (초광대역 전이 구조를 이용한 다이오드 검파기 설계)

  • Kim, In-Bok;Kim, Young-Gon;Kim, Tae-Gyu;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.814-819
    • /
    • 2008
  • In this paper, a design of broadband detectors utilizing two ultra-wideband transitions is described for the first time, and the implementation method and measurement results of the detectors are provided. Two ultra-wideband transitions are used for input/output matching circuits for the diode detectors. Two detectors have been implemented using general Schottky diodes and zero-bias Schottky diodes. With general Schottky diodes, the fabricated detector provides less than 10 dB return loss from 11 GHz to 20 GHz, and the detector sensitivity is 30 mV/mW. The detector with zero-bias Schottky diodes shows significantly higher detection sensitivity(300 mV/mW).

Ultra-Wideband Tapered Slot Antennas for Millimeter-Wave Systems (밀리미터파 시스템 응용을 위한 초광대역 테이퍼 슬롯 안테나 설계)

  • Woo, Dong-Sik;Kim, Young-Gon;Cho, Young-Ki;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.913-919
    • /
    • 2008
  • A new design and its experimental results of a microstrip-fed ultra-wideband tapered slot antenna(TSA) for millimeter-wave systems are presented. By utilizing the ultra-wideband microstrip-to-CPS transition(balun), ultra-wideband characteristics of the inherent TSA are retrieved. Also, the design procedure of the TSA is simplified by performing simple impedance matching between balun and antenna. The proposed TSA is shaped by using the Fermi-Dirac tapering function and corrugated at the outer edge. The implemented antenna demonstrates ultra-wideband performance for frequency ranges from 23 to over 58 GHz with the relatively high and flat antenna gain of 12 to 14 dBi and low sidelobe levels. In addition, a 4-element linear antenna array for phased-array systems and mm-wave sensor applications is also presented.

A Study on Characteristics of Series-Fed Dipole Pair Antenna with End-Aligned Strip Pair Director (종단 정렬된 스트립 쌍 도파기를 가지는 직렬 급전 다이폴 쌍 안테나의 특성 연구)

  • Yeo, Junho;Lee, Jong-Ig;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.805-810
    • /
    • 2014
  • In this paper, the characteristics of a series-fed dipole pair antenna with an end-aligned strip pair director are studied. In the proposed SDP antenna, two strip dipole antennas with different lengths and a ground reflector are connected trough a coplanar stripline. The strip pair director placed above the second dipole element are two rectangular-shaped strips and is aligned at the ends of the two arms of the second dipole. The variations on the antenna performance for different lengths and widths of the director are analyzed, and optimal design parameters for the enhancement of the bandwidth are obtained. The optimized SDP antenna is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.65-2.95 GHz for a VSWR < 2, which shows enhanced bandwidth compared to the conventional SDP antenna.

On-Glass Vehicle Antennas Using a Multi-Loop Structure (다중 루프 형태의 차량용 글래스 안테나)

  • Ahn, Seung-Beom;Kay, Young-Chul;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.230-239
    • /
    • 2009
  • In this paper, we propose a novel on-glass antenna for FM radio reception in a recreation vehicle(RV). We use a multi-loop structure that takes advantage of a broad matching bandwidth and a high vertical radiation gain by efficiently utilizing a given space of a quarter glass in spite of the simple planar structure. Transparency of the antenna is also improved by adjusting the stripline widths based on the induced current distributions. The proposed antenna is printed on a quarter glass of a commercial vehicle and antenna performances such as the return loss and the gain are measured in a semi-anechoic chamber. The result shows the average gain of -9.67 dBi along the bore-sight direction($\theta=90^{\circ}$, $\phi=270^{\circ}$) in the FM radio band(80$\sim$l10 MHz), which is higher than a commercial monopole typed on-glass antenna($G_{ave}$=-12.49 dBi) and micro-antenna($G_{ave}$=-19.24 dBi) mounted on the roof of the RV.

A Broadband High Gain Planar Vivaldi Antenna for Medical Internet of Things (M-IoT) Healthcare Applications

  • Permanand, Soothar;Hao, Wang;Zaheer Ahmed, Dayo;Falak, Naz;Badar, Muneer;Muhammad, Aamir
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.245-251
    • /
    • 2022
  • In this paper, a high gain, broadband planar vivaldi antenna (PVA) by utilizing a broadband stripline feed is developed for wireless communication for IoT systems. The suggested antenna is designed by attaching a tapered-slot construction to a typical vivaldi antenna, which improves the antenna's radiation properties. The PVA is constructed on a low-cost FR4 substrate. The dimensions of the patch are 1.886λ0×1.42λ0×0.026λ0, dielectric constant Ɛr=4.4, and loss tangent δ=0.02. The width of the feed line is reduced to improve the impedance bandwidth of the antenna. The computed reflection coefficient findings show that the suggested antenna has a 46.2% wider relative bandwidth calculated at a 10 dB return loss. At the resonance frequencies of 6.5 GHz, the studied results show an optimal gain of 5.82 dBi and 85% optimal radiation efficiency at the operable band. The optometric analysis of the proposed structure shows that the proposed antenna can achieve wide enough bandwidth at the desired frequency and hence make the designed antenna appropriate to work in satellite communication and medical internet of things (M-IoT) healthcare applications.

Design of a Band-Tunable Ultra-Wideband Single-Balanced Doubler (대역 가변형 초광대역 단일 평형 체배기의 설계)

  • Kim, In-Bok;Kim, Young-Gon;Jang, Tae-Gyoung;Song, Sun-Young;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.714-720
    • /
    • 2009
  • In this paper, design and the implementation method of a band-tunable ultra-wideband planar doubler are described Microstrip-to-CPS(balun) transition and Microstrip-to-CPW transition are respectively used for input/output matching circuits for the doubler. The Input balun structure allows to apply diode bias, and the doubler output frequency is tunable by changing the diode bias voltage. With the bias voltage of -0.6 V, the measured operating frequency band of the implemented doubler is $10{\sim}20$ GHz, with the bias voltage of $-0.2{\sim}-0.4$ V, the operating frequency band is $10{\sim}30$ GHz, and with 0 V bias, the operating frequency band is $20{\sim}30$ GHz. The doubler provides conversion loss of less than 15 dB and fundamental frequency suppression of 30 dB.

UWB Bandpass Filter Using Capacitive Coupling with Cross Resonator ("+"자 공진기와 용량성 결합을 이용한 초광대역 대역 통과 여파기)

  • Dong, Thai Hoa;Lee, Jae-Young;Kim, Ihn-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.486-493
    • /
    • 2010
  • This article introduces a novel ultra wideband(UWB) bandpass filter(BPF) with sharp roll-off characteristics in stripline structure. The UWB characteristic is basically obtained from capacitive coupled cross resonator. The resonator has ${\lambda}/2$ length. And at the center of the resonator, two stubs are loaded, one is a ${\lambda}/8$ short-circuited stub and the other is a ${\lambda}/8$ open-circuited stub. The two stubs provide two attenuation poles at lower and upper cutoff frequencies. For input and output lines, two identical capacitively coupled lines have been installed to suppress the unwanted signals in the lower and upper stopbands. The filter has been designed for the U.S. UWB band(3.1~10.6 GHz) with two transmission zeros at 2.4 and 11.1 GHz. The filter has been realized with Low Temperature Core-fired Ceramic(LTCC) green tape which has the dielectric constant of 7.8. Measurement results agree well with HFSS simulation results. Insertion loss less than 0.7 dB and return loss better than 14 dB in the pass band have been measured. The group delay in the center frequency is 0.27 ns and the group delay variation within pass band is less than 0.5 ns. The size of the filter is $6{\times}18{\times}0.6\;mm^3$.

Broadband LTCC Receiver Module for Fixed Communication in 40 GHz Band (40 GHz 대역 고정통신용 광대역 LTCC 수신기 모듈)

  • Kim Bong-Su;Kim Kwang-Seon;Eun Ki-Chan;Byun Woo-Jin;Song Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.1050-1058
    • /
    • 2005
  • This paper presents how to design and implement a very compact, cost effective and broad band receiver module for IEEE 802.16 FWA(Fixed Wireless Access) in the 40 GHz band. The presented receiver module is fabricated in a multi-layer LTCC(Low Temperature Cofired Ceramic) technology with cavity process to achieve excellent electrical performances. The receiver consists of two MMICs, low noise amplifier and sub-harmonic mixer, an embedded image rejection filter and an IF amplifier. CB-CPW, stripline, several bond wires and various transitions to connect each element are optimally designed to keep transmission loss low and module compact in size. The LTCC is composed of 6 layers of Dupont DP-943 with relative permittivity of 7.1. The thickness of each layer is 100 um. The implemented module is $20{\times}7.5{\times}1.5\;mm^3$ in size and shows an overall noise figure of 4.8 dB, an overall down conversion gain of 19.83 dB, input P1 dB of -22.8 dBm and image rejection value of 36.6 dBc. Furthermore, experimental results demonstrate that the receiver module is suitable for detection of Digital TV signal transmitted after up-conversion of $560\~590\;MHz$ band to 40 GHz.