• Title/Summary/Keyword: stringent control

Search Result 145, Processing Time 0.025 seconds

Comparative Study of Hazardous Heavy Metal Contents by Cosmetic Type (화장품 유형별 유해 중금속 함량 비교 연구)

  • Lee, Jin hee;Kim, Ji Yeon;Park, Sang Gyu;Lee, Jae Ho;Yoon, Jong Ho;Kim, Gyoung Tae;Kim, Hae Jung
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.2
    • /
    • pp.154-163
    • /
    • 2019
  • Objectives: The hazardous heavy metal contents of cosmetics were investigated and the resulting values were compared by type of cosmetics: skin care preparations (SCP), hair preparations (HP), makeup preparations (MP), and eye makeup preparations (EMP). Methods: The hazardous heavy metal contents (Pb, As, Cd, Sb, Ni and Hg) were analyzed for 358 cosmetics products (187 SCP, 82 HP, 56 MP, and 33 EMP). Hg was measured by the amalgamation method, and other hazardous heavy metals were measured by inductively coupled plasma optical emission spectrometer (ICP-OES) after decomposition using the microwave method. Results: The mean contents of Pb, As, Cd, Sb, Ni, and Hg in cosmetics were 0.424, 0.068, 0.024, 0.398, $0.567{\mu}/g$, and Not Detected, respectively. All of the hazardous heavy metals were detected in most products, but below the recommended maximums of the Ministry of Food and Drug Safety. The level of Cd was the lowest at 14.8%, and Sb was the highest at 41.2%. Pb, Sb and Ni showed the highest mean value and detection rate in EMP. As, Cd, and Hg showed the highest in SCP, HP, and MP, respectively. Conclusion: Hazardous heavy metals were detected in most products. In particular, Pb, Sb, and Ni were broadly detected in EMP, meaning more stringent quality control is required.

A Review on Meat Quality Evaluation Methods Based on Non-Destructive Computer Vision and Artificial Intelligence Technologies

  • Shi, Yinyan;Wang, Xiaochan;Borhan, Md Saidul;Young, Jennifer;Newman, David;Berg, Eric;Sun, Xin
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.563-588
    • /
    • 2021
  • Increasing meat demand in terms of both quality and quantity in conjunction with feeding a growing population has resulted in regulatory agencies imposing stringent guidelines on meat quality and safety. Objective and accurate rapid non-destructive detection methods and evaluation techniques based on artificial intelligence have become the research hotspot in recent years and have been widely applied in the meat industry. Therefore, this review surveyed the key technologies of non-destructive detection for meat quality, mainly including ultrasonic technology, machine (computer) vision technology, near-infrared spectroscopy technology, hyperspectral technology, Raman spectra technology, and electronic nose/tongue. The technical characteristics and evaluation methods were compared and analyzed; the practical applications of non-destructive detection technologies in meat quality assessment were explored; and the current challenges and future research directions were discussed. The literature presented in this review clearly demonstrate that previous research on non-destructive technologies are of great significance to ensure consumers' urgent demand for high-quality meat by promoting automatic, real-time inspection and quality control in meat production. In the near future, with ever-growing application requirements and research developments, it is a trend to integrate such systems to provide effective solutions for various grain quality evaluation applications.

Review of GPS and Galileo Integrity Assurance Procedure (GPS와 Galileo의 무결성 보장 방법 조사)

  • Namkyu Woo;Gihun Nam;Heonho Choi;Jiyun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • Global Navigation Satellite Systems are expected to meet system-defined integrity requirements when users utilize the system for safety critical applications. While the guaranteed integrity performance of GPS and Galileo is publicly available, their integrity assurance procedure and related methodology have not been released to the public in an official document format. This paper summarizes the integrity assurance procedures of Global Positioning System (GPS) and Galileo, which were utilized during their system development, through a literature survey of their integrity assurance methodology. GPS Block II assures system integrity using the following methods: continuous performance monitoring and maintenance on Space Segment (SS) and Control Segment (CS), through a cause and effect analysis of anomalies and a failure analysis. In GPS Block III, to achieve more stringent integrity performance, safety requirements are integrated into the system design and development from its starting phase to the final phase. Galileo's integrity performance is provided in the Integrity Support Message (ISM) format, as Galileo utilizes a Dual Frequency Multi Constellation (DFMC) Satellite Based Augmentation System (SBAS) and Advanced Receiver Autonomous Integrity Monitoring (ARAIM) to serve safety critical applications. The integrity performance of Galileo is ensured by using a methodology similar to GPS Block II (i.e. continuous performance monitoring and maintenance on the system). The integrity assurance procedures reviewed in this paper can be utilized for a new satellite navigation system that will be developed in the near future.

Control Measures for Air Pollutant Emissions from In-Use Light-Duty Diesel Vehicles Regarding their Emission Control Technologies (배출허용기준 대응기술을 고려한 국내 소형 경유 운행차의 대기오염물질 관리 방안)

  • Lee, Taewoo;Park, Hana;Park, Junhong;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.327-338
    • /
    • 2014
  • The objective of this study is to enhance the effectiveness of Korean Inspection and Maintenance (I/M) program. Three main tasks are: to measure pollutant emissions of in-use light-duty diesel vehicles (LDVs); to evaluate the validity of existing smoke control scheme for low-smoke-emitting vehicles, which have diesel particulate filters, DPF, to meet stringent Euro-5 emission limits; and to assess the necessity and the benefit of $NO_x$ inspection, which is not involved in current I/M program. We measured second-by-second smoke, particulate and gaseous emissions of 27 LDVs using opacity smoke meter, photo-acoustic soot sensor, and portable emissions measurement system, respectively, under the Korean I/M test driving cycle, KD-147. We find that the DPF plays a key role in controlling soot, which can be considered as black carbon contained in particulate matter. Thus, from an I/M perspective, we believe smoke inspection strategies for Euro-5 diesel vehicles should be more focused on the capability of detecting DPF malfunctions or failures, in order to keep DPF properly functional. Fleet averaged distance-specific $NO_x$ emissions are consistently higher than corresponding emission limits, and the values are similar among pre-Euro-3, Euro-3, and Euro-4 vehicle fleets. These findings indicate that the $NO_x$ inspection should be incorporated into current I/M program in order to manage urban $NO_x$ emissions. This research allows the Korean I/M program keep pace with developments in vehicle technologies, as well as the increased emphasis on $NO_x$ with respect to air quality and human health.

Active Front End Rectifier Control of DC Distribution System Using Neural Network (신경회로망을 적용한 직류배전시스템의 AFE 정류기 제어에 관한 연구)

  • Kim, Seongwan;Jeon, Hyeonmin;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1124-1128
    • /
    • 2021
  • As regulations of emissions from ships become more stringent, electric propulsion systems have been increasingly used to solve this problem in vessels ranging from large merchant ships to small and medium-sized ships. Methods for improving the efficiency of the electric propulsion system include the improvement of power sources; the use of a system linked to environmentally friendly power sources, such as batteries, fuel cells, and solar power; and the development of hardware and control methodology for rectifiers, power conversion devices, and propulsion motors. The method using a phase-shifting transformer with diodes has been widely used for rectification. Power semiconductor devices with grid connection to an environmentally friendly power source using DC distribution, a variable speed power source, and the application of small and medium-sized electric propulsion systems have been developed. Accordingly, the demand for active front-end (AFE) rectifiers is increasing. In this study, a method using a neural network rather than a conventional proportional-integral controller was proposed to control the AFE rectifier. Tested controller data were used to design a neural network controller trained through MATLAB/Simulink. The neural network controller was applied to a rectification system designed using PSIM software. The results indicated the effectiveness of improving the waveform and power factor DC output stage according to the load variation. The proposed system can be applied as a rectification system for small and medium-sized environmentally friendly ships.

Development Status of BTL (Biomass to Liquid) Technology (BTL(Biomass to Liquid) 기술 현황)

  • Chae, Ho-Jeong;Jeong, Kwang-Eun;Kim, Chul-Ung;Jeong, Soon-Yong
    • Journal of Energy Engineering
    • /
    • v.16 no.2
    • /
    • pp.83-92
    • /
    • 2007
  • In view of stringent environment regulations to control the emission of green house gases and also depleting fossil fuel reserves, it is high quality desirable to develop alternative technologies to produce high quality fuels. To this end Biomass to Liquid (BTL) technology has received much attention in recent years. BTL process generally consists of gasification of biomass to produce bio-syngas, cleaning and control of $H_{2}/CO$ mole ratio of bio-syngas and Fischer-Tropsch synthesis & upgrading systems. Choren, Germany has first developed the commercial BTL process using unique gasification system i.e., Carbo-V. A new technology to remove tars and BTX has been developed by ECN in Netherlands employing a gasification system combined with OLGA technology. Several other countries including USA and Japan are showing great interest in BTL technology. Thus in view of our national energy security and also the environmental regulations, it is essential to develop alternative technologies like BTL in order to meet the increasing demand of energy though our insufficient biomass resources. In this paper we present an overview and development status of BTL-diesel technology.

A architecture and control method of Streaming Packet Scheduler at 100bps for Guaranteed QoS of Internet and Broadcasting Services (인터넷 및 방송서비스의 QoS 보장을 위한 10Gbps급 스트리밍 패킷 스케줄러 구조 및 제어방법)

  • Kim Kwang-Ok;Park Wan-Ki;Choi Byeoun-Chul;Kwak Dong-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.23-34
    • /
    • 2004
  • This paper presents architecture and control method of packet scheduler to guarantee QoS of high quality streaming services in high-speed packet-switched networks. Since streaming services need far more stringent QoS requirements than the typical sort of burst data applications, they should be guaranteed minimum bandwidth and end-to-end delay bound to each flow, regardless of the behavior of other flows. To meet these requirements, a packet scheduler isolate a flow from the undesirable effects of other flows and provides end-to-end delay guarantees for individual flow and divides stringently the available link bandwidth among flows sharing the link. Until now, many vendors are developing traffic management chips running at 10Gbps, but most of chips have drawbacks to support high quality streaming services. In this paper, we investigate the drawbacks of commercial TM chips and traffic characteristic of streaming services and present implementation frameworks of the proposed packet scheduler. Finally, we analyze the simulation results of the proposed scheduler.

Analysis of Packet Transmission Delay in the DC Power-Line Fault Management System using IEEE 802.15.4 (IEEE 802.15.4를 적용한 직류배전선로 장애관리시스템에서 패킷전송 지연시간 분석)

  • Song, Han-Chun;Hwang, Sung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.259-264
    • /
    • 2014
  • IEEE 802.15.4 has been emerging as the popular choice for various monitoring and control applications. In this paper, a fault management system for DC power-lines has been designed using IEEE 802.15.4, in order to monitor DC power-lines in real time, and to rapidly detect faults and shut off the line where such faults occur. Numbers were allocated for each node and unslotted CSMA-CA method of IEEE 802.15.4 was used, the performance of which was analyzed by a simulation. For such purpose, a total of 60 bits of the control data consisting of 16 bits of the current, 16 bits of the amplitude, 28 bits of the terminal state data were sent out, and the packet transfer rate and the transmission delay time of the fault management system for DC power-lines were measured and analyzed. When the traffic load was 330 packets per second or lower, the average delay time was shown to be shorter than 0.02 seconds, and when the traffic load was 260 packets per second or lower, the packet transfer rate was shown to be 99.99% or higher. Therefore, it was confirmed that the stringent condition of US Department of Energy (DOE) could be satisfied if the traffic load was 260 packets per second or lower, The results of this study can be utilized as basic data for the establishment of the fault management system for DC power-lines using IEEE 802.15.4.

Process Fault Probability Generation via ARIMA Time Series Modeling of Etch Tool Data

  • Arshad, Muhammad Zeeshan;Nawaz, Javeria;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.241-241
    • /
    • 2012
  • Semiconductor industry has been taking the advantage of improvements in process technology in order to maintain reduced device geometries and stringent performance specifications. This results in semiconductor manufacturing processes became hundreds in sequence, it is continuously expected to be increased. This may in turn reduce the yield. With a large amount of investment at stake, this motivates tighter process control and fault diagnosis. The continuous improvement in semiconductor industry demands advancements in process control and monitoring to the same degree. Any fault in the process must be detected and classified with a high degree of precision, and it is desired to be diagnosed if possible. The detected abnormality in the system is then classified to locate the source of the variation. The performance of a fault detection system is directly reflected in the yield. Therefore a highly capable fault detection system is always desirable. In this research, time series modeling of the data from an etch equipment has been investigated for the ultimate purpose of fault diagnosis. The tool data consisted of number of different parameters each being recorded at fixed time points. As the data had been collected for a number of runs, it was not synchronized due to variable delays and offsets in data acquisition system and networks. The data was then synchronized using a variant of Dynamic Time Warping (DTW) algorithm. The AutoRegressive Integrated Moving Average (ARIMA) model was then applied on the synchronized data. The ARIMA model combines both the Autoregressive model and the Moving Average model to relate the present value of the time series to its past values. As the new values of parameters are received from the equipment, the model uses them and the previous ones to provide predictions of one step ahead for each parameter. The statistical comparison of these predictions with the actual values, gives us the each parameter's probability of fault, at each time point and (once a run gets finished) for each run. This work will be extended by applying a suitable probability generating function and combining the probabilities of different parameters using Dempster-Shafer Theory (DST). DST provides a way to combine evidence that is available from different sources and gives a joint degree of belief in a hypothesis. This will give us a combined belief of fault in the process with a high precision.

  • PDF

Determination of Gasoline Brands by the Comparison of Infrared Spectra of Polymeric Dispersants (청정분산제의 적외선 분광스펙트럼 비교를 통한 자동차용 휘발유 제조사의 판별)

  • Kim, Myeonghee;Jang, Youngsik;Jung, Chungseop;Lee, Hyunkee
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.469-473
    • /
    • 1998
  • The gasoline brands can be determined by gas chromatography. However, determining from the differences in chromatograms is sometimes ambiguous because the gasoline composition is becoming similar from refinery to refinery due to stringent regulations for the protection of the atmospheric environment. To determine the gasoline brands of five refineries in Korea, we have obtained and compared IR spectra of polymeric dispersants which are added to gasoline at several hundreds of ppm levels. Since the deposit control additives used by the five refineries in Korea are different from one another, it is possible to determine the gasoline brands by comparing their IR spectra. A strong and broad C-O stretch absorption peak appears at $1,096cm^{-1}$ for the additives used by A, B, and C refineries, which renders an easy differentiation of the additives from those of D and E refineries. The differentiation of all five gasoline brands are possible due to the characteristic vibrations present in each additive.

  • PDF