• Title/Summary/Keyword: strike-slip faulting

Search Result 48, Processing Time 0.025 seconds

Magnetic Anisotropy and Tectonic Stress Field of Tertiary Rocks in Pohang-Ulsan area, Korea (포항이남 제3기분지암석의 자기 비등방성과 지구조적 응력장)

  • Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.59-71
    • /
    • 1990
  • Magnetic anisotropy of a total of 213 independently oriented Tertiary rock samples from Pohang-Ulsan area has been studied. The sampled strata comprise basalts, tuffs and black shale, and range in age from Eocene to Miocene. The previous palaeomagnetic studies indicate that their magnetic carrier minerals are titanomagnetites. Among 23 sampled sites, 11 sites were found to preserve magnetic load foliation parallel to the bedding plane caused by the Iithostatic load of the overlying strata. Other 4 sites showed magnetic lineation indicating the flow direction of lava and tuffs. The remaining 8 sites revealed the magnetic tectonic foliation nearly vertical to the bedding plane. This magnetic foliation is interpreted to be generated by tectonic compression which acted nearly horizontally during the solidification stage of the strata. The compression directions deduced from the tectonic foliation of the 8 sites can be grouped into internally very consistent two group: a N-S trending one and the other WNW-ESE trending one. It is interpreted that the former N-S compression was associated with the N-S spreading of the East Sea(Sea of Japan) and the dextral strike-slip movement of the Yangsan-Ulsan fault system. The latter WNW-ESE compression is interpreted to represent the folding and reverse faulting activity in the Korean and Tsushima straits during middle/late Miocene times.

  • PDF

Characteristics of Pohang CO2 Geological Sequestration Test Site (포항 이산화탄소 지중저장 시험 사이트 특성)

  • Kim, Seon-Kyoung;Chang, Chandong;Shinn, Youngjae;Kwon, Yikyun
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.175-182
    • /
    • 2018
  • We analyze geological, petrophysical and geomechanical characteristics of a $CO_2$ sequestration test site, Pohang. The target reservoir exists at a depth of 750 m, where porous and permeable sandstones/conglomerates prevail. The reservoir is underlain by thick mudstone formations. We estimate in situ stress conditions using an exploratory wellbore drilled through the target reservoir. The in situ stress condition is characterized by a strike-slip faulting favored stress regime. We discuss various aspects of reservoir fracture pressures and fault reactivation pressures based on the stress magnitudes.

Evolution of the eastern margin of Korea: constraints on the opening of the East Sea (Japan Sea)

  • Kim, Han-Joon;Jou, Hyeong-Tae;Suk, Bong-Chool
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.73-83
    • /
    • 2007
  • We interpreted marine seismic profiles in conjunction with swath bathymetric and magnetic data to investigate rifting to breakup processes at the eastern Korean margin that led to the separation of the southwestern Japan Arc. Analysis of rift fault patterns suggests that rifting at the Korean margin was primarily controlled by normal faulting resulting from extension rather than strike-slip deformation. Two extension directions of E-W and NW-SE for rifting are recognized. We interpret that the E-W direction represents initial rifting at the inner margin and the NW-SE direction probably represents the extension in response to tensional tectonics associated with the subduction of the Pacific Plate in the NW direction. No significant volcanism was involved in rifting. In contrast, the inception of sea floor spreading documents a pronounced volcanic phase which appears to reflect asthenospheric upwelling as well as rift-induced convection particularly in the narrow southern margin. We suggest that structural and igneous evolution of the Korean margin, although it is in a back-arc setting, can be explained by the processes occurring at the passive continental margin with magmatism influenced by asthenospheric upwelling.

  • PDF

Earthquake Mechanism in and around the Korean Peninsula (한반도 및 인근의 지진 메카니즘 특성)

  • Jun, Myung-Soon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1-5
    • /
    • 2008
  • In and around the Korean Peninsula, 9 intraplate earthquake mechanisms since 1936 were analyzed to understand the regional stress orientation and tectonics. These earthquakes are largest ones in this century and may represent the characteristics of earthquake in this region. Focal mechanism of these earthquakes show predominant strike-slip faulting with small amount of thrust components. The average P-axis is almost horizontal ENE-WSW. This indicate that not only the subducting Pacific Plate but also the indenting Indian Plate controls earthquake mechanism in the far east of the Eurasian Plate.

  • PDF

Deformation History of the Pohang Basin in the Heunghae Area, Pohang and Consideration on Characteristics of Coseismic Ground Deformations of the 2017 Pohang Earthquake (Mw 5.4), Korea (포항 흥해지역에서 포항분지의 변형작용사와 2017 포항지진(Mw 5.4) 동시성 지표변형 특성 고찰)

  • Ji-Hoon, Kang
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.485-505
    • /
    • 2022
  • On November 15, 2017, a Mw 5.4 Pohang Earthquake occurred at about 4 km hypocenter in the Heunghae area, and caused great damage to Pohang city, Korea. In the Heunghae area, which is the central part of the Pohang Basin, the Cretaceous Gyeongsang Supergroup and the Late Cretaceous to Early Paleogene Bulguksa igneous rocks as basement rocks and the Neogene Yeonil Group as the fillings of the Pohang Basin, are distributed. In this paper, structural and geological researches on the crustal deformations (folds, faults, joints) in the Pohang Basin and the coseismic ground deformations (sand volcanoes, ground cracks, pup-up structures) of Pohang Earthquake were carried out, and the deformation history of the Pohang Basin and characteristics of the coseismic ground deformations were considered. The crustal deformations were formed through at least five deformation stages before the Quaternary faulting: forming stages of the normal-slip (Gokgang fault) faults which strike (N)NE and dip at high angles, and the high-angle joints of E-W trend regionally recognized in Yeonil Group and the faults (sub)parallel to them, and the conjugate normal-slip faults (Heunghae fault and Hyeongsan fault) which strike E-W and dip at middle or low angles and the accompanying E-W folds, and the conjugate strike-slip faults dipped at high angles in which the (N)NW and E-W (NE) striking fault sets show the (reverse) sinistral and dextral strike-slips, respectively, and the conjugate reverse-slip faults in which the NNE and NNW striking fault sets dip at middle angles and the accompanying N-S folds. Sand volcanoes often exhibit linear arrangements (sub)parallel to ground cracks in the coseismic ground deformations. The N-S or (N)NE trending pop-up structures and ground cracks and E-W or (W)NW trending ground were formed by the reverse-slip movement of the earthquake source fault and the accompanying buckling folding of its hanging wall due to the maximum horizontal stress of the Pohang Earthquake source. These structural activities occurred extensively in the Heunghae area, which is at the hanging wall of the earthquake source fault, and caused enormous property damages here.

Geological Structure around Andong Fault System, Pungcheon-myeon, Andong, Korea (안동시 풍천면 안동단층계 주변의 지질구조)

  • Kang, Ji-Hoon;Lee, Duck-Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.83-94
    • /
    • 2008
  • The Pungcheon-myeon, Andong, consists mainly of Precambrian metamorphic rocks, Jurassic igneous rocks, Cretaceous sedimentary rocks (Hasandong, Jinju and Iljik Formations) and Cretaceous igneous rocks (gabbroic rocks, dykes), in which several major faults are developed; Andong fault of ENE trend, which is the boundary fault of the Cretaceous Gyeongsang Basin and the Precambrian-Jurassic basement (Yeongnam Massif), Namhu fault parallel to it, Maebong fault of NNW direction, bow-shaped Gwangdeok fault of ENE direction which is convex toward SSE direction, and Hahoe fault of NNE direction. This paper is researched the geological structures around these major faults by means of the detailed geometric analysis on beddings, joints, faults and drag folds. As a result, a reverse slip faulting of top-to-the SSE movement accompanied with a regional drag folding is recognized from the arrangement of bedding poles measured around the Gwangdeok and Hahoe faults at its northeastern extension, and a zone of Gwangdeok drag fold of 150-300 m width, which is wider at the central and eastern parts of Gwangdeok fault and narrower at its western part and Hahoe fault, is also defined. It indicates that the Hahoe and Gwangdeok faults are a single fault and their movements are coeval unlike the results of earlier reasearchers. And, In this area are recognized two types of faults [(E)NE${\sim}$EW(fault I), WNW${\sim}$NNW (fault II), trending faults] and four types of joints [EW (I), (N)NW (II), NNE (III), NE (IV) trending joints]. These fractures were formed at least through four different events, named as Dn to Dn+3 phases. (1) Dn phase; the formation of joint (I) (Gwangdeok joint) and the intrusion of acidic dykes of EW trend under the compression of EW direction. (2) Dn+1 phase; the formations of joint (II) (Maebong joint), lens-shaped boudinage of acidic dykes, oblique-slip reverse fault (Fault I-Gwangdeok fault) under the compression of (N)NW direction, and the formation of regional zone of Gwangdeok drag fold accompanying the Gwangdeok faulting. (3) Dn+2 phase; those of joint (III), Fault II (Maebong fault) by dextral strike-slip movement of Maebong joint under the compression of NNE direction, and the extension cutting of Dn+1 structures due to the Maebong faulting. (4) Dn+3 phase; the jointing (IV) and the reactivation of Fault II as oblique-slip type with predominant dextral motion which took place under the compression of NE direction. It also suggests that the Maebong fault is not a tear fault deveolped during thrust tectonics of the Andong and Gwangdeok faults but is a post-fault during different tectonic event.

Geometric Analysis of Minor Faults and Paleostress Reconstruction around the Dongnae Fault (동래단층 주변 소단층의 분포 특성과 고응력장 복원)

  • 조용찬;장태우;이정모
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.41-52
    • /
    • 1998
  • The Dongnae Fault in the southeastern part of the Korean Peninsular is not a single fault but a complex fault zone composed of numerous minor faults. In order to deduce the paleostress tensor evolving the Dongnae Fault, we measured 329 faults in outcrops around the fault zone and analyzed the geometries of them. Most of them are steeply dipping(>65˚) and fall into three groups striking N10E, N30E and N70E. More than one half of them show the rakes less than 30˚ Paleostress tensor analysis using the collected fault data has been conducted with the Angelier's direct inversion method and the Choi's method. As result, four different principal paleostress axes each of which subtends an independent tectonic event are found. They are; (1) NNE-SSW compression and ESE-WNW extension (Event I), (2) NNE-SSW extension (Event II), (3) ESE-WNW extension (Event III) and (4) ENE-WSW compression and NNW-SSE extension (Event IV) in chronology. Therefore, the tectonic movement around the Dongnae Fault was firstly governed by strike-slip faulting related to Event I. Afterward, normal faults were formed by Event II and Event III. Finally, the dextral strike-slip faults along the major trace of the Dongnae Fault were formed in NNE direction related to Event IV.

  • PDF

Anisotropy of Magnetic Susceptibility (AMS) of the Quaternary Faults, SE Korea: Application to the Determination of Fault Slip Sense and Paleo-stress Field (한반도 남동부 제4기 단층의 대자율이방성(AMS): 단층의 운동감각과 고응력장 해석)

  • Cho, Hyeongseong;Kim, Min-Cheol;Kim, Hyeonjeong;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.75-103
    • /
    • 2014
  • The Quaternary faults are extensively observed along major inherited fault zones (i.e. Yangsan Fault System, Ulsan Fault, Yeonil Tectonic Line, Ocheon Fault System) in SE Korea. Their geometry and kinematics provide a very useful piece of information about the Quaternary crustal deformation and stress field in and around Korean Peninsula. Using magnetic fabrics (AMS), we attempted to determine the slip senses of Jinti, Mohwa, Suseongji2, and Wangsan faults and then interpreted the fabric development process of fault gouge and the characteristics of stress field during the Quaternary. All the magnetic fabrics of the faults, except the Wangsan Fault, consistently indicate a dominant reverse-slip sense with weak strike-slip component. Most of the oblate fabrics are nearly parallel to the fault surface and the anisotropy degrees generally increase in proportion to the oblatenesses. These results suggest that the fabrics of the fault gouges resulted from a progressive deformation due to continuous simple shear during the last reactivation stage as reverse faulting. It is also interpreted that the pre-existing fabrics were overwhelmed and obliterated by the re-activated faulting. Paleostress field calculated from the fault slip data indicates an ENE-WNW compressive stress, which is in accord with those determined from previous fault tectonic analysis, focal mechanism solution, and hydraulic fracturing test in and around Korean Peninsula.

Geochronology and Petrochemistry of Foliated Granites between Damyang and Jinan (담양(潭陽)-진안(鎭安)사이에 분포(分布)하는 엽리상화강암류(葉理狀花崗岩類)에 대(對)한 지질시대(地質時代)와 성인(成因)에 관(關)한 연구(硏究))

  • Kim, Cheong Bin;Kim, Yong Jun
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.233-244
    • /
    • 1990
  • Plutons of Damyang-Jinan area consist of gray feldspar granite gneiss, biotite granite gneiss, foliated granites, Namweon granites, gabbro, biotite granite and Ogangri granite in term of mineralogical, texture and field evidence. From Isotope data of study area, chronological order of the Plutons are the Pre-cambrian gray feldspar granite gneiss(Ar39-Ar40, hornblende, $1998.4{\pm}8.3Ma$), middle to late Triassic Daegang foliated granite(Rb/Sr, whole rock, $288{\pm}4Ma$), foliated hornblende biotite granodiorite(K/Ar, hornblende, $198.7{\pm}9.9Ma$), Sunchang foliated granodiorite(Rb/Sr, whole rock, $222{\pm}4Ma$), foliated two mica granite, Samori foliated granite and Namweon granite(Rb/Sr, whole rock, $211{\pm}3Ma$: K/Ar, hornblende, $203{\pm}10.2Ma$), middle Jurassic Gabbro(K/Ar, hornblende, $180.7{\pm}9MA$) and biotite granite, and Cretaceous Ogangri granite. According to variations diagrams of $Al_2O_3$ versus normative PI(100 An)/(Ab+An), Daegang foliated granite is plotted on tholeiitic series, and other foliated granites on calc alkaline rock series which are consider to be formed by magmatism at continental margin and island arc region. And alkalinity versus $SiO_2$ shows that Daegang folited granite and Samori foliated granite are correspond to alkaline region, foliated hornblende biotite granodiorite and Sunchang foliated granodiorite to calc alkaline region, and foliated two mica granite to both regions. According to ACF diagrams, Daegang and Samori foliated granites are plotted on S-type. Foliated hornblende biotite granodiorite and Sunchang foliated granodiorite on I-type, and foliated two mica granite on both type. Foliated granites are a series of differentiated products from cogenetic magma, and effected under ductile sheared zone. Characteristic foliation of foliated granites are considered to be generated by dextral strike slip faulting and ductile shearing.

  • PDF

Source parameters for the December 13 1996 ML 4.5 Earthquake in Yeongwol, South Korea (1996년 12월 13일 ML 4.5 영월 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.23-29
    • /
    • 2009
  • On December 13, 1996, an earthquake with local magnitude (M$_L$) 4.5 occurred in the Yeongwol area of South Korea. The epicenter was 37.2545$^{\circ}$N and 128.7277$^{\circ}$E, which is located inside the Okcheon Fold Belt. The waveform inversion analysis was carried out to estimate source parameters of the event according to the filtering bandwidth of seismic data. Using 0.02$\sim$0.2 Hz filtering bandwidth, focal depth and seismic moment were estimated to be 6 km and 1.3$\times$10$^{16}$ N$\cdot$m, respectively. This seismic moment corresponds to the moment magnitude (M$_W$) 4.7. The focal mechanism by the waveform inversion and P wave first motion polarity analysis is a strike slip faulting including a small thrust component, and the direction of P-axis is ENE-WSW. The moment magnitude estimated by spectral analysis was 4.8, which is similar to that estimated by waveform inversion. Average stress drop was estimated to be 14.3 MPa.